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ABSTRACT
We study properties of confidence intervals (CIs) for the difference of two Bernoulli distribu-
tions’ success parameters. The CIs under investigation range from the classical fixed-sample- 
size CI to sequential versions, possibly incorporating batching. For each CI method, we examine 
the attained coverage, as well as the trade-offs between the number of observations and 
stages required to obtain a desired CI width. We consider cases in which the two populations 
are completely independent, and we provide analytical and simulation results to measure the 
performance of the different methods. For the multi-stage methods, we find that a simple 
observation allocation rule based on comparing the sample standard deviations of the two 
populations is more efficient than taking equal sample sizes from both. We also show that the 
use of a moderate level of batching saves stages at only modest costs in sample size and 
coverage.

ARTICLE HISTORY 
Received 10 March 2021  
Accepted 07 July 2021 

KEYWORDS 
Confidence intervals; 
Bernoulli success 
parameters; two-sample 
differences; simulation

1. Introduction and motivation

Our interest in this paper lies in obtaining parsimo-
nious sequential confidence intervals (CIs) for the 
difference of the success parameters arising from two 
Bernoulli distributions. This goal can be motivated by 
several practical applications.

• Given a highly dangerous and virulent pandemic 
that is circulating around the world, a university wants 
to compare the proportion of students currently 
infected with the disease to the proportion of faculty 
infected.

• A pharmaceutical company is interested in study-
ing the efficacy of a new drug, and so will compare the 
probability that the new drug provides immunity vs. 
that of a placebo.

• A warehouse logistics manager wants to know 
which of two simulated inventory policies has the 
higher probability of yielding a 98% on-time delivery 
rate of goods to a client, where a “success” is defined as 
the event that at least 98% of all orders were delivered 
on time during a particular simulation replication.

Of course, sampling can be expensive, so in each of 
the above scenarios, it is important to allocate the 
available observational units wisely. How can this be 
accomplished?

To put things on a more-solid footing, suppose that 
X1;X2; . . . ;Xn are independent and identically distrib-
uted (iid) Bern(px) random variables, Y1;Y2; . . . ;Ym 
are iid Bern(py), and that the Xʼs and Yʼs are inde-
pendent. Such iid observations are easily obtained in 

the context of computer simulation by running inde-
pendent replications of the each of two simulation 
models.

We first consider the “classical” Wald approximate 
CI for px � py of the form 

px � py 2 �X � �Y � H ; �X � �Y

� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xð1 � �XÞ

n
þ

�Yð1 � �YÞ
m

r

; (1) 

where �X;
Pn

i¼1 Xi=n and �Y;
Pm

j¼1 Yj=m are the 
respective sample means, zα=2 denotes the usual ð1 �
α
2Þ quantile of the standard normal distribution, and 
the half-length H is implicitly defined. It is well- 
known that this CI has poor small-sample properties. 
In particular, for small values of n and m, the coverage 
probability of this CI can substantially undershoot or 
even overshoot the nominal probability 1 � α (see, 
e.g., the surveys in Agresti and Coull (1998); Brown 
et al. (2001, 2002); Frey (2010), and Newcombe (1998) 
for the analogous single-parameter Bern(p) case). 
Various techniques exist to push the coverage towards 
the nominal value. For instance, for the single- 
parameter case, Agresti and Coull (1998) and Wilson 
(1927) study fixed-sample-size CIs that append cor-
rection terms to Wald’s CI, and Clopper and Pearson 
(1934) give an exact CI obtained by inverting certain 
binomial tests.

One often wishes to produce a CI of at most 
a certain length. This task typically requires more 
than one stage of observations to be carried out. 
Such procedures in the context of a single 

CONTACT David Goldsman sman@gatech.edu H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 
Atlanta, GA, 30332-0205, U.S.A

JOURNAL OF SIMULATION                               
https://doi.org/10.1080/17477778.2021.1955629

© Operational Research Society 2021.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2021.1955629&domain=pdf&date_stamp=2021-09-24


Bernoulli parameter are studied by, e.g., Armitage 
(1958), Khan (1998), Robbins and Siegmund 
(1974), Tanaka (1961), and Yaacoub et al. 
(2019b) (which gives a certain optimal sampling 
rule), and Zacks and Mukhopadhyay (2007). There 
are other criteria that dictate when to stop sam-
pling besides delivering a particular half-width. 
For instance, one can consider the proportional 
accuracy criterion, where the CI for p in the one- 
sample case is given by fp : j�X � pj< cpg for 
a fixed c 2 ð0; 1Þ (Huber (2017) and Malinovsky 
and Zacks (2018)). See Mukhopadhyay and 
Banerjee (2015) for yet a different intuitive stop-
ping criterion. Turner et al. (2013) illustrates the 
estimation of the Bernoulli success parameter (and 
others) in the context of simulation. In terms of 
transitioning the single-sample Bern(p) CIs over to 
a two-sample version, the current paper begins 
with the basic CI (1) (with none of the corrections 
mentioned above) and proposes two-stage and 
sequential heuristics in order to satisfy a certain 
bound on the CI half-width. One could also 
invoke a ranking-and-selection perspective on the 
problem of finding that one of k � 2 Bernoulli 
populations having the largest (or smallest) suc-
cess parameter (see, e.g., Bechhofer et al. (1995) 
and Goldsman (2015)); but this approach is not 
considered here.

This paper studies analytical and simulation- 
based methodologies to determine how many and 
what additional observations to take, starting from 
something like (1), in order to obtain a CI of at 
most a pre-specified length. The organisation of the 
article is as follows. x2 discusses exact performance 
properties of the basic CI (1). In x3, we analyse an 
“optimized” two-stage CI procedure that attempts to 
efficiently allocate the available budget so as to pro-
duce a CI that approximately satisfies a user- 
specified half-width requirement; the procedure is 
“naive” in the sense that it does not guarantee the 
half-width requirement. x4 is concerned with 
sequential sampling rules. In particular, x4.1 consid-
ers a one-at-a-time sequential sampling procedure, 
while x4.2 proposes a compromise in which we 
batch observations – thus potentially adding a few 
extra observations, but certainly reducing the num-
ber of sampling stages (which corresponds to a time 
savings). x5 presents a Monte Carlo evaluation of 
the various procedures, where we report on perfor-
mance measures such as CI coverage probability and 
expected half-length, as well as the expected number 
of stages (and observations) required to obtain the 
pre-specified half-width. We find that batching pro-
vides a good middle ground that offers savings in 
terms of both observations and stages. x6 gives 

a summary of our findings as well as suggestions 
for future study.

2. Properties of the basic confidence interval 
(1)

We first consider performance characteristics for the 
easiest case – the basic single-stage confidence interval 
for px � py of the form (1). Its coverage probability 
and expected half-width can be computed exactly for 
any given px, py, n, m, and α.

We continue to assume that the X’s and Y ’s are 
independent samples, and we define 

gði; jÞ; Prð�X ¼ i=n; �Y ¼ j=mÞ

¼ Prð�X ¼ i=nÞPrð�Y ¼ j=mÞ

¼
n
i

� �

pi
xqn� i

x
m
j

� �

pj
yqm� j

y ;

i ¼ 0; 1; . . . ; n; j ¼ 0; 1; . . . ;m;

where the second equality comes from independence 
and the third from the binomial distribution, and 
where qx;1 � px and qy;1 � py. On the way to an 
expression for the exact coverage, we denote the indi-
cator function for an arbitrary event E by 

1ðEÞ ;
1 if E occurs
0 otherwise:

�

In addition, we define the event 
C;fCI covers px � py g. Then exact expressions for 
the coverage and expected half-width of the CI are 
given by 

PrðCÞ ¼ E ½1ðCÞ�

¼
Xn

i¼0

Xm

j¼0
1 C j�X ¼

i
n
; �Y ¼

j
m

� �

gði; jÞ

¼
Xn

i¼0

Xm

j¼0
1 px � py 2 �X � �Y � Hj�X ¼

i
n
; �Y ¼

j
m

� �

gði; jÞ

¼
Xn

i¼0

Xm

j¼0
1 px� py2

i
n
�

j
m
�zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

n2ð1�
i
n
Þþ

j
m2ð1�

j
m
Þ

r !

gði;jÞ;

(2) 

and 

E ½H� ¼
Xn

i¼0

Xm

j¼0
H j �X ¼

i
n
; �Y ¼

j
m

� �

gði; jÞ

¼ zα=2

Xn

i¼0

Xm

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

n2 ð1 �
i
n
Þ þ

j
m2 ð1 �

j
m
Þ

r

gði; jÞ:

(3) 
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Figure 1 depicts exact results based on Equations (2) 
and (3) for, respectively, the coverage probability and 
expected half-width of the basic confidence interval 
(1) for three choices of probability pairs (px; py), 
confidence level 100ð1 � αÞ ¼ 95%, and all equal 

sample sizes n ¼ m up to 250. We see that the 
expected half-width exhibits reasonably smooth 
behaviour; and when the sample size is above 5, it 
is monotonically decreasing. The achieved coverage 
is quite a bit more erratic; most of the time it falls 

Figure 1. Coverage and expected half-width of the basic confidence interval (1), for three choices of probability pairs (px; py), 
confidence level 100ð1 � αÞ ¼ 95%, and equal sample sizes n ¼ m ¼ 1; 2; . . . ; 250.
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below the desired value of 95% for small n (which is 
a known issue for (1)). Notably, when px � py, the 
coverage exhibits local peaks with respect to n, fol-
lowed by intervals where the coverage temporarily 
decreases as the sample size increases. Of course, as 
n becomes large, the coverage approaches the nom-
inal value 1 � α.

3. Two-stage confidence interval

This section discusses a simple two-stage procedure 
based on the classical CI (1). As is typical of such 
procedures, the first stage of sampling establishes 
a baseline CI for px � py, which is subsequently used 
to suggest a second-stage sample size that will yield 
a CI that (approximately) has a desired half-width. 
The procedure is “naive” in the sense that the deliv-
ered half-width is random and does not necessarily 
meet the specification.

In order to produce preliminary estimates of px and 
py, suppose that we have taken an initial (first-stage) 
sample of n1 iid Bern(px) X’s and m1 iid Bern(py) Y ’s, 
where the X’s are independent of the Y ’s, and n1 and 
m1 are specified beforehand by the user. These obser-
vations could be obtained, for instance, from n1 and 
m1 independent replications of two simulated pro-
cesses. Let cx;�X1ð1 � �X1Þ and cy;�Y1ð1 � �Y1Þ, where 
�X1 and �Y1 are the respective sample means from the 
initial stage of n1 and m1 observations. Then, the 
initial CI based on our first-stage samples of sizes n1 
and m1 is 

px � py 2 �X1 � �Y1 � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx

n1
þ

cy

m1

r

:

3.1. Optimised sample-size calculation

With our limited knowledge about the state of affairs 
after just one stage of observations, we would like to 
decide how many extra observations we need to take 
in order to reduce our confidence interval’s half-width 
H to a value that is at most some specified error �. 
Specifically, if n and m are the total sample sizes of the 
X’s and Y ’s, respectively, what is the smallest overall 
budget N ¼ nþm that will “likely” give us a CI hav-
ing half-width H � �?

To simplify things a little bit in the upcoming dis-
cussion, let n ¼ βN and m ¼ ð1 � βÞN for some sui-
table 0< β< 1, where we temporarily ignore the 
possibility that n and m might not be integers. Then, 
the goal is to find some “optimal” N and β, so that 

zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cx

βN
þ

cy

ð1 � βÞN

r

� �;

or, equivalently, 

N �
z2

α=2

�2
cx

β
þ

cy

1 � β

� �

: (4) 

We will minimise this quantity with respect to β. To 
this end, set 

f ðβÞ ;
cx

β
þ

cy

1 � β 

and take 

f 0ðβÞ ¼
� cx

β2 þ
cy

ð1 � βÞ2
¼ 0:

Notice that if both cx and cy are equal to zero, then 
f ðβÞ ¼ 0. So we henceforth assume that at least one of 
them is greater than zero.

(I) If cx ¼ 0 and cy > 0 [cy ¼ 0 and cx > 0], then 
since β 2 ð0; 1Þ, we have f 0ðβÞ> 0 [f 0ðβÞ< 0], and the 
minimum is achieved when β approaches zero [one].

(II) When both cx and cy are greater than zero, we 
solve f 0ðβÞ ¼ 0, which means solving 
β2ðcy � cxÞ þ 2βcx � cx ¼ 0. When cx ¼ cy, it is clear 
that the solution is β ¼ 0:5. Otherwise, there are two 
solutions, but the only critical point that is between 0 
and 1 is 

β? ;
� cx þ

ffiffiffiffiffiffiffifficxcy
p

cy � cx
¼

ffiffiffifficx
p

ffiffiffifficx
p
þ

ffiffiffifficy
p ¼

1
1þ

ffiffiffiffiffiffiffiffiffiffi
cy=cx

p ;

which is determined by the ratio of the (non-zero) 
estimated standard deviations of the X’s and Y ’s.

We also see that the second derivative of f ðβÞ is 

f 00ðβÞ ¼
2cx

β3 þ
2cy

ð1 � βÞ3
:

This quantity is positive for β 2 ð0; 1Þ, so β? yields the 
minimum of f ðβÞ for all cases. Then, Equation (4) 
suggests that we will need N to be at least 

N � N?;
z2

α=2

�2
cx

β?
þ

cy

1 � β?

� �

¼
z2

α=2ð
ffiffiffifficx
p
þ

ffiffiffifficy
p
Þ

2

�2 :

(5) 

The quantity β? is used to divide the number of obser-
vations N between the two populations, so that the 
total sample sizes will be n ¼ hβ?N?i and 
m ¼ hð1 � β?ÞN?i, where h�i denotes the “round-to- 
the-nearest-integer” function. Note that cx and cy are 
bounded from above by 1=4, resulting in 
a conservative upper bound for the total sample size 
of N? � z2

α=2=�
2.

3.2. Exact analysis

The optimised two-stage approach comes with at least 
two potential drawbacks: Since cx and cy are random 
variables (before observations are taken), we see that (i) 
the second-stage sample size is a random variable, and (ii) 
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there is no guarantee that the N? and β? described above 
will actually result in a CI having a half-width � �.

We will illustrate these issues by carrying out 
some exact calculations under the assumption that 
the first-stage sample sizes are n1 and m1. From 
Equation (5), we immediately have that the naive two- 
stage heuristic to obtain a confidence interval having 
half-width H � � suggests a total of 

N ;
z2

α=2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X1ð1 � �X1Þ

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Y1ð1 � �Y1Þ

q� �2
& ’

observations, where “ �d e” denotes the “ceiling” (inte-
ger round-up) function. In fact, in light of the first- 
stage observations, the total number of observations 
taken is (a slightly redefined) N?; maxfn1 þm1;Ng.

We define the related quantity 

Nði; jÞ;
z2

α=2

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

n1
1 �

i
n1

� �s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j

m1
1 �

j
m1

� �s" #22

6
6
6

3

7
7
7

which is valid for i ¼ 0; 1; . . . ; n1 and j ¼ 0; 1; . . . ;m1; 
so Nði; jÞ is just N given that �X1 ¼ i=n1 and �Y1 ¼ j=m1. 
We also define n?ði; jÞ;hmaxfn1; Nði; jÞβ?gi and 
m?ði; jÞ;hmaxfm1; Nði; jÞð1 � β?Þgi for all i; j, where 
β? is chosen as in x3.1. Both quantities represent the 
total numbers of observations we end up taking for each 
population given the first-stage results. We also define 
the corresponding second-stage sample sizes, 
n2ði; jÞ;n?ði; jÞ � n1 and m2ði; jÞ;m?ði; jÞ � m1 for 
all i; j.

Similar to the notation introduced in x2, we define 
the first-stage sample probabilities for all i ¼
0; 1; . . . ; n1 and j ¼ 0; 1; . . . ;m1, 

g1ði; jÞ ¼ Prð�X1 ¼ i=n1; �Y1 ¼ j=m1Þ

¼
n1

i

� �

pi
xqn1� i

x
m1

j

� �

pj
yqm1� j

y :

The numbers of successes for the two respective popu-
lations in the second stage are given by 

Txði; jÞ ;
Xn
?ði;jÞ

r¼n1þ1
Xr and Tyði; jÞ ;

Xm
?ði;jÞ

r¼m1þ1
Yr;

and we define the second-stage sample probabilities 
for all i ¼ 0; 1; . . . ; n1, j ¼ 0; 1; . . . ;m1, 
k ¼ 0; 1; . . . ; n2ði; jÞ, and , ¼ 0; 1; . . . ;m2ði; jÞ by 

g2ði; j; k; ,Þ ¼ PrðTxði; jÞ ¼ k;Tyði; jÞ ¼ ,Þ

¼
n2ði; jÞ

k

� �

pk
xqn2ði;jÞ� k

x
m2ði; jÞ

,

� �

p,
yqm2ði;jÞ� ,

y :

With all of this notation in mind, it is easy to see that 
the expected total number of observations to be taken 
from the two populations in the naive two-stage pro-
cedure is 

E ½N?� ¼
Xn1

i¼0

Xm1

j¼0
ðn?ði; jÞ þm?ði; jÞÞg1ði; jÞ:

We now obtain expressions for the two-stage proce-
dure’s coverage probability and expected half-width. 
Recall that the event C ¼ fCI covers px � pyg, so that 

PrðCÞ ¼ E½1ðCÞ�

¼
Xn1

i¼0

Xm1

j¼0
1 Cj �X1 ¼

i
n1
; �Y1 ¼

j
m1

� �

g1ði; jÞ

¼
Xn1

i¼0

Xm1

j¼0

Xn2ði;jÞ

k¼0

Xm2ði;jÞ

,¼0
1
�

C j�X1 ¼
i

n1
; �Y1 ¼

j
m1

;

Txði; jÞ ¼ k;Tyði; jÞ ¼ ,

�

g2ði; j; k; ,Þg1ði; jÞ

¼
Xn1

i¼0

Xm1

j¼0

Xn2ði;jÞ

k¼0

Xm2ði;jÞ

,¼0
1
�

px � py 2 �X � �Y �Hijk,j

�X ¼
iþ k

n?ði; jÞ
; �Y ¼

jþ ,

m?ði; jÞ

�

g2ði; j; k; ,Þg1ði; jÞ;

where �X and �Y are the total sample means taken over 
both stages, and 

Hijk, ; zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iþ k

n?ði; jÞ2
ð1 �

iþ k
n?ði; jÞ

Þ þ
jþ ,

m?ði; jÞ2
ð1 �

jþ ,

m?ði; jÞ
Þ

s

:

Similarly, we can also calculate the expected half- 
width of the delivered CI, 

E ½H� ¼
Xn1

i¼0

Xm1

j¼0

Xn2ði;jÞ

k¼0

Xm2ði;jÞ

,¼0
Hijk, g2ði; j; k; ,Þg1ði; jÞ:

These equations give us straightforward ways to calcu-
late the expected sample size, coverage probability, and 
expected half-width for fixed n1; m1; px, py, and α. If 
the desired error � is very small and/or the probabilities 
are near 0.5, then more “work” is required to obtain the 
confidence interval. This extra work might be in the 
form of prohibitively large sample sizes used in the 
calculations, in which case simulation may be necessary 
to estimate the three performance measures.

Figure 2 depicts histograms of the number of obser-
vations N? required by our naive two-stage procedure 
for probability pairs ðpx; pyÞ ¼ ð0:2; 0:2Þ and 
ð0:5; 0:2Þ; equal first-stage sample sizes n1 ¼ m1 ¼ 20 
(small-sample case), 50 (medium), and 125 (large); 
desired half-width � ¼ 0:02; and nominal confidence 
level 95%. It is clear that N?’s variability is significant 
for small initial sample sizes. In addition, more obser-
vations are required when either px or py � 0:5.
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4. Sequential sampling procedures

The naive two-stage procedure may suffer from 
a number of potential drawbacks. For instance,
•The procedure’s required sample size can be quite ran-
dom, and is strongly dependent on the first-stage sample 
sizes ðn1;m1Þ (Figure 2).
• The observations are not used efficiently (since there 
is only one chance at the end of the first stage to make 
a sampling decision).
• It does not guarantee the delivery of a half-width � �; 
and, in addition, the delivered half-width H has high 
variability.

• The coverage probability achieved is not always 
1 � α, and with smaller sample sizes tends to be 
below that nominal value; see the discussion in x5.

This section aims to take advantage of sequential 
sampling to mitigate the above issues. We first 
present in x4.1 a fully sequential one-at-a-time 
sampling heuristic, followed by a procedure in 
x4.2 that incorporates batching to save on sampling 
stages – which is useful since stages can be inter-
preted as “time”.

Figure 2. Total number of observations required by the two-stage procedure for ðpx; pyÞ ¼ ð0:2; 0:2Þ and ð0:5; 0:2Þ; 
n1 ¼ m1 ¼ 20, 50, and 125; � ¼ 0:02; and 1 � α ¼ 0:95. The vertical line represents E ½N?].
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4.1. Fully sequential procedure

In this subsection, we consider a one-at-a-time sequen-
tial sampling procedure. The idea is that after having 
taken a preliminary sample ðn1;m1Þ, we will execute 
a sequential procedure to eventually obtain a CI of half- 
width � �. We will take observations one-at-a-time in 
a “greedy” way that aims to get the biggest bang for the 
buck by deciding to take an observation from X or Y 
based on which is “more likely” to reduce the CI width 
the most. We stop sampling and deliver our CI after 
the first stage for which the half-width is � �.

We denote the sample means after r stages of 
observations have been taken by �Xr and �Yr, along 
with respective cumulative sample sizes of nr and mr, 
r ¼ 1; 2; . . . . We propose a simple sampling rule based 
roughly on a comparison of the sample standard 
errors of the X’s and Y ’s. Namely, while the CI still 
has half-width > �, continue sampling in such a way as 
to attempt to reduce the half-width as much as possi-
ble: If at the end of stage r � 1 we have 

�Xr� 1ð1 � �Xr� 1Þ
1

nr� 1
�

1
nr� 1 þ 1

� �

> �Yr� 1ð1 � �Yr� 1Þ
1

mr� 1
�

1
mr� 1 þ 1

� �

;

(6) 

then take the next observation (stage r) from the X’s 
because we are likely to get more bang for the buck by 
that choice; otherwise, take from the Y ’s. In the case of 
equality, as both samples presumably have the same 
cost, the tie is broken arbitrarily. Continue until we 
finally meet the desired half-width criterion. The 
greedy optimisation heuristic given by (6) makes 
sense because, at any stage, the left- and right-hand 
sides are rough measures of the incremental CI width 
reductions to be obtained by taking the next observa-
tion from X or Y , respectively.

We initialise the first-stage sample sizes for the two 
populations by n1 and m1. If, on any given subsequent 
stage r ¼ 2; 3; . . . , we decide to take an X observation, 
then we set nr  nr� 1 þ 1 and mr  mr� 1; else take a 
Y observation and set nr  nr� 1 and mr  mr� 1 þ 1.

In the next section, simulation will be used to 
approximate the coverage probability, the expected 
CI half-width, and the expected number of observa-
tions needed to obtain a CI of the desired width.

4.2. Sequential procedure with batching

In practice, the strategy of executing observations one- 
at-a-time, and then waiting for the result of that stage 
in order to proceed with the next one, is often imprac-
tical because of time expenditures. Instead, we can 
consider the middle-ground scenario in which batches 
of B observations-at-a-time are taken and processed 
before the next batch (stage) starts. This is reminiscent 
of a testing protocol for epidemics, where B test 

observations can be performed each day, with results 
typically available after 24–48 hours. Of course, the 
fully sequential procedure described in x4.1 is simply 
the B ¼ 1 special case.

We partially repeat previous notation definitions, 
this time adapted for batching. We again initialise the 
first-stage sample sizes for the two populations as n1 
and m1. Suppose that, on any given subsequent stage 
r ¼ 2; 3; . . . , we decide to take a batch of B observa-
tions, divided into br X observations and B � br Y ’s. 
(We describe how to choose br below.) Then, we set 
nr  nr� 1 þ br and mr  mr� 1 þ B � br and let 

�Xr ;
1
nr

Xnr

i¼1
Xi and �Yr ;

1
mr

Xmr

i¼1
Yi 

denote the cumulative sample means of the X’s and 
Y ’s after r stages of sampling have been completed. 
Moreover, we also denote crx;�Xrð1 � �XrÞ

and cry;�Yrð1 � �YrÞ.
We continue with the batched sampling scheme 

until the desired half-width criterion is met, with the 
goal of minimising the number of observations taken 
along the way subject to the required coverage 
probability.

What remains is to describe how to select br on any 
given stage. First of all, the CI at the end of stage r � 1 
is given by 

px � py 2 �Xr� 1 � �Yr� 1 � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cr� 1;x

nr� 1
þ

cr� 1;y

mr� 1

r

: (7) 

In light of the current (stage r � 1) values of cr� 1;x and 
cr� 1;y, we will determine the stage-r sample sizes br 

and B � br of the X’s and Y ’s, respectively, so as to 
minimise the expected half-width of the next stage; 
and because the square root is a monotonic function, 
this is equivalent to the following surrogate minimisa-
tion problem. 

minimise E
crx

nr
þ

cry

mr

� �

subject to B

stage-r observations ðand given cr� 1;x and cr� 1;yÞ:

(8) 

In order to address this problem, suppose that 
�Xr� 1 ¼ a, a known quantity at the end of stage r � 1. 
Then 

nr �Xr ¼
Xnr

i¼1
Xi ¼

Xnr� 1

i¼1
Xi þ

Xnr

i¼nr� 1þ1
Xi 

¼ nr� 1 aþ
Xnr

i¼nr� 1þ1
Xi 

, nr� 1 aþ Binðbr; pxÞ;

and this distributional result implies that 
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E½crx�

¼ E½�Xr� � E½�X2
r � ¼ E½�Xr� � Varð�XrÞ � fE½�Xr�g

2

¼
nr� 1a

nr
þ

brpx

nr

� �

�
brpxð1 � pxÞ

n2
r

�
nr� 1a

nr
þ

brpx

nr

� �2

�
nr� 1a

nr
þ

bra
nr

� �

�
brað1 � aÞ

n2
r

�
nr� 1a

nr
þ

bra
nr

� �2

ðwhere we approximate px by aÞ

¼ að1 � aÞ 1 �
br

n2
r

� �

¼ cr� 1;x 1 �
br

n2
r

� �

:

Similarly, 

E
crx

nr
þ

cry

mr

� �

�
cr� 1;x

nr
1 �

br

n2
r

� �

þ
cr� 1;y

mr
1 �

B � br

m2
r

� �

:

Under the completely reasonable assumption that the 
batch size B is small compared to the accumulated 
actual sample sizes nr and mr, we have that br � n2

r 
and B � br � m2

r ; and so we obtain 

E
crx

nr
þ

cry

mr

� �

�
cr� 1;x

nr
þ

cr� 1;y

mr
; (9) 

which is the intuitively pleasing quantity that we will 
minimise in light of (8).

To simplify things, let γr 2 ½0; 1� denote a generic 
proportion; and define that fraction of the batch size B 
by the quantity br;γrB. Thus, by Equation (9), we 
have the following problem to solve: 

minimise f ðγrÞ ;
cr� 1;x

nr� 1 þ γrB
þ

cr� 1;y

mr� 1 þ ð1 � γrÞB
for γr 2 ½0; 1�:

We compute the first and second derivatives with 
respect to γr: 

f 0ðγrÞ ¼
� Bcr� 1;x

ðnr� 1 þ γrBÞ
2 þ

Bcr� 1;y

ðmr� 1 þ ð1 � γrÞBÞ
2 

f 00ðγrÞ ¼
2B2cr� 1;x

ðnr� 1 þ γrBÞ
3 þ

2B2cr� 1;y

ðmr� 1 þ ð1 � γrÞBÞ
3 :

We do not consider the case where cr� 1;x ¼ cr� 1;y ¼ 0 
since then the half-width is 0. In the case cr� 1;x ¼ 0, 
then the minimum value is attained at γr ¼ 0; and 
when cr� 1;y ¼ 0, the minimum value is attained at 
γr ¼ 1. So we consider the case in which cr� 1;x and 
cr� 1;y�0; and for that we need to solve the equation 
f 0ðγrÞ ¼ 0, which is equivalent to 

Bcr� 1;xðmr� 1 þ Bð1 � γrÞÞ
2
¼ Bcr� 1;yðnr� 1 þ BγrÞ

2

,
ffiffiffiffiffiffiffiffiffiffifficr� 1;x
p

ðmr� 1 þ Bð1 � γrÞÞ

¼
ffiffiffiffiffiffiffiffiffiffifficr� 1;y
p

ðnr� 1 þ BγrÞ;

which follows after a little algebra and the fact that all 
of the terms are positive. Solving for γr we obtain 

γ?r ¼
ffiffiffiffiffiffiffiffiffiffifficr� 1;x
p

ðmr� 1 þ BÞ � ffiffiffiffiffiffiffiffiffiffifficr� 1;y
p nr� 1

Bð ffiffiffiffiffiffiffiffiffiffifficr� 1;x
p

þ
ffiffiffiffiffiffiffiffiffiffifficr� 1;y
p

Þ
:

Notice that depending on the value of B, it may be the 
case that γ?r falls outside of the [0,1] interval. In 
particular,

• γ?r < 0 if and only if B<
ffiffiffiffiffiffiffiffi
cr� 1;y
cr� 1;x

q
nr� 1 � mr� 1.

• γ?r > 1 if and only if B< � nr� 1 þ
ffiffiffiffiffiffiffiffi
cr� 1;x
cr� 1;y

q
mr� 1.

And as B is positive and the right-hand sides of the 
above inequalities are both 0 or have different signs, 
then at most one of the two conditions can hold at any 
time. In fact, if γ?r < 0, then f 0ðγrÞ> 0 for all γr 2 ½0; 1�, 
and thus the minimum is achieved at ~γ?r ¼ 0. 
Similarly, when γ?r > 1, then f 0ðγrÞ< 0 for all 
γr 2 ½0; 1�, in which case the minimum is achieved at 
~γ?r ¼ 1. Finally, for any other case, because f 00ðγrÞ > 0 
for any γr 2 ð0; 1Þ, then the location of the minimum 
is ~γ?r ¼ γ?r , which occurs in that interval.

These results suggest the following multi-stage pro-
cedure using batches: While the desired half-width for 
the confidence interval has yet to be achieved, com-
pute γ?r using the values cr� 1;x; cr� 1;y; nr� 1;mr� 1;B, and 
then obtain ~γ?r . Compute the number of observations 
to take in the next stage, br and B � br, by rounding to 
the nearest integers, h~γ?r Bi and hð1 � ~γ?r ÞBi, respec-
tively. Take the suggested number of observations 
from both populations, recalculate the CI (7) with r 
instead of r � 1, and stop if the desired half-width is 
achieved.

This algorithm generalises the individual (one-at 
-a-time) sampling procedure. By way of motivation, 
let us consider that B ¼ 1 case, where our batch 
method takes a new observation from the X popula-
tion if br ¼ γ?r B ¼ γ?r > 0:5, i.e., if 

ffiffiffiffiffiffiffiffiffiffifficr� 1;x
p

ðmr� 1 þ 1Þ � ffiffiffiffiffiffiffiffiffiffifficr� 1;y
p nr� 1

ffiffiffiffiffiffiffiffiffiffifficr� 1;x
p

þ
ffiffiffiffiffiffiffiffiffiffifficr� 1;y
p > 0:5;

which is equivalent to 

cr� 1;x

cr� 1;y
>

n2
r� 1 þ nr� 1 þ 0:25

m2
r� 1 þmr� 1 þ 0:25

: (10) 

Meanwhile, the “original” individual sampling criter-
ion (6) going from stage r � 1 to stage r is to take an 
observation from the X population if (after a little 
algebra) 

cr� 1;x

cr� 1;y
>

n2
r� 1 þ nr� 1

m2
r� 1 þmr� 1

;

which is roughly the same condition as (10) for mod-
erately large nr� 1 and mr� 1.

5. Monte Carlo analysis

This section presents the results of a Monte Carlo 
study analysing the performance of the naive two- 
stage procedure and the sequential procedure with 
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and without batching. The performance measures 
under evaluation include the coverage probability, 
the expected half-width, and the expected number of 
stages required to obtain the desired half-width. For 
a large selection of the underlying probabilities px and 
py, we consider scenarios involving various choices of 
the following CI specifications: maximum desired 
half-width �; initial (equal) sample sizes n1 ¼ m1; 
and batch size B. All scenarios are simulated with 
1000 replications, with common random numbers 
used for the observations, to allow for “apples-to- 
apples” comparisons among procedures. In order to 
obtain nontrivial (nonzero) initial estimators 

ffiffiffiffiffiffic1x
p

and 
ffiffiffiffiffiffic1y
p of the sample standard deviations of the X’s and 
Y ’s, respectively, our initial sample sizes occasionally 
had to be increased to some multiple of the “tentative” 
initial n1 – to ensure at least one success and failure 
from the X’s and Y ’s; this contingency was more likely 
to be necessitated when px or py were very close to 0 or 
1. Notice that because of the common random num-
bers, the initial sample for a particular simulation 
replication was always the same for all procedures, 
and otherwise the comparisons between procedures 
were not affected.

5.1. Two-stage procedure results

Figure 3 presents estimates of the coverage and 
expected number of observations for the naive two- 
stage procedure with tentative initial sample sizes of 
n1 ¼ m1 ¼ 35; desired half-widths � ¼ 0:01 and 0:02; 
and confidence level 1 � α ¼ 0:95. In order to com-
pute the results, representative choices of the prob-
ability pairs (“scenarios”) (px; py) were selected and 
presented along the horizontal axis. Subfigure (a) at 
the top presents the following probability pairs from 
left to right (px � 0:35):

• px ¼ 0:01; py ¼ 0:01
• px ¼ 0:03; py ¼ 0:01; 0:03
• px ¼ 0:05; py ¼ 0:01; 0:03; 0:05
• px ¼ 0:1; py ¼ 0:01; 0:03; 0:05; 0:1
• px ¼ 0:2; py ¼ 0:01; 0:03; 0:05; 0:1; 0:2
• px ¼ 0:35; py ¼ 0:01; 0:03; 0:05; 0:1; 0:2; 0:35

The bottom subfigure (b) presents the following prob-
ability pairs from left to right (px � 0:5):

• px ¼ 0:5; py ¼ 0:01; 0:03; 0:05; 0:1; 0:2; 0:35; 0:5 

• px ¼ 0:75; py ¼ 0:01; 0:03; 0:05; 0:1; 0:2; 0:35;
0:5; 0:75  

• px ¼ 0:9; py ¼ 0:01; 0:03; 0:05; 0:1; 0:2; 0:35;
0:5; 0:75; 0:9

Figure 4 illustrates the same results, but for tentative 
initial sample sizes of n1 ¼ m1 ¼ 100.

We are first interested in how well the two-stage 
method covers the parameter of interest, px � py. 

Thus, for a particular subfigure, the red and orange 
lines give the values of the coverages achieved by the 
two-stage method for � ¼ 0:01; 0:02, respectively. 
Second, we are concerned with the expected total 
number of observations (from either X or Y) resulting 
from our request to obtain a desired CI half-width �; 
this is given by the blue and purple plots 
(� ¼ 0:01; 0:02, respectively) in a particular subfigure.

For a given fixed px, it is easy to see that the number 
of observations required by the two-stage procedure 
increases when py increases, and the maximum value 
is attained when both parameters are equal. Now, 
when we let px increase from 0.01, 0.03, . . ., 0.5, we 
observe an increasing cyclic pattern up to px ¼ 0:5 
that has local peaks at the scenarios for which 
px ¼ py; and then a decreasing cyclic pattern, this 
time with maximum local values when py ¼ 0:5. 
These two qualitative phenomena occur for the var-
ious choices of the initial sample sizes and the desired 
half-widths under study in the current paper.

It is often the case that the coverage of 95% is not 
achieved, though the coverage usually seems to be 
approximately the same for both choices of �. In fact, 
the coverage actually falls well below 95% when the 
initial sample is small (n1 ¼ m1 � 35) and at least one 
of px or py is large ( � 0:9). (Note that the coverage 
estimates generally have standard errors of about 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:95Þð0:05Þ=1000

p
¼ 0:0069.) We also remark that 

the average number of observations required for fixed 
� is not particularly affected by the choice of the initial 
sample size, at least in our examples, where n1 ¼ m1 is 
small compared to the final average number of obser-
vations required.

5.2. Two-stage procedure vs. sequential 
procedure

We now use Monte Carlo simulation to compare the 
performance of the naive two-stage and one-at-a-time 
(fully) sequential procedures. Our work proceeds in 
parallel to our discussion in x5.1, except we are now 
concerned with differences in the performance 
between the two procedures.

The Monte Carlo results are again based on 
a tentative initial sample of n1 observations from 
both populations. In particular, Figures 5–7 corre-
spond to n1 ¼ 10, 35, and 100, respectively: all 
with 1 � α ¼ 0:95. Each figure is itself comprised 
of two subfigures, corresponding to desired half- 
widths � ¼ 0:01; 0:02. Each subfigure depicts the 
same sets of results for representative choices of 
the probability pairs (scenarios) (px; py) along the 
horizontal axis (the same choices as were used in 
x5.1). For a specific subfigure, the red and orange 
plots give values of the differences in coverages 
achieved by the two-stage and the one-at-a-time 
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sequential procedures. The blue and purple plots 
in a particular subfigure compare the differences in 
expected sample sizes between the naive two-stage 
and the one-at-a-time sequential procedures.

Figure 5 gives results for which the tentative initial 
sample is of size n1 ¼ 10. For each choice of para-
meters (px; py) the coverage difference seems to be 
small and not much affected even by very different 

values of px and py. (It is not possible to reject the 
hypothesis that the coverage differences are statisti-
cally insignificant as the coverage difference estimates 
generally have standard errors of about 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð0:95Þð0:05Þ=1000

p
¼ 0:0097.) On the other hand, 

we observe significant cyclic behaviour for the sample- 
size results, indicating scenarios in which one method 
is more parsimonious than the other. When one of px 

Figure 3. Naive two-stage procedure: Estimated coverage and expected number of observations for various probability pairs 
ðpx; pyÞ; n1 ¼ m1 ¼ 35; � ¼ 0:01, 0:02; and 1 � α ¼ 0:95.
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and py is at most 0.05, the naive two-stage method 
performs worse than the fully sequential; and when 
px ¼ 0:9 the two-stage procedure also requires more 
samples. For all other scenarios the naive two-stage 
procedure performs at least as well as the fully sequen-
tial procedure with respect to sample size; and this 
advantage is greater when both probabilities are close 
to each other, likely due to difficulty in the sequential 

procedure’s ability to distinguish between two prob-
abilities that are approximately equal. Of course, the 
underlying reason for the two-stage procedure’s good 
sample-size performance is that it cannot guarantee 
the desired half-width – a major drawback of that 
method.

Figure 6 gives analogous results for tentative 
initial sample size n1 ¼ 35. Now we find a smaller 

Figure 4. Naive two-stage procedure: Estimated coverage and expected number of observations for various probability pairs 
ðpx; pyÞ; n1 ¼ m1 ¼ 100; � ¼ 0:01, 0:02; and 1 � α ¼ 0:95.
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set of probability pairs (px; py) for which the fully 
sequential method outperforms the two-stage pro-
cedure in terms of sample size. Here the sample- 
size advantage of the fully sequential method is 
restricted to probability pairs where both px; py 

are at most 0:05 and to pairs where one of px; py 

is very small (at most 0.03). For all other scenarios, 
the two-stage procedure performs better in terms of 

sample size, and its advantage is greater when 
px � py. We also see that the performance differ-
ences between the methods are quantitatively smal-
ler when we use an initial sample size of n1 ¼ 35 
compared to n1 ¼ 10 (everything else being held 
fixed).

The trend just described continues in Figure 7. Now 
the fully sequential method has a sample-size 

Figure 5. Naive two-stage procedure vs. fully sequential procedure: Coverage and sample-size differences for initial sample sizes 
n1 ¼ m1 ¼ 10; half-widths � ¼ 0:01; 0:02; and 1 � α ¼ 0:95.
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advantage over the two-stage method only when at 
least one of px; py is equal to 0.01 (at least for the 
scenarios considered herein). Moreover, the perfor-
mance differences between the methods are smaller 
compared to the n1 ¼ 10 and 35 cases. Yet again, the 
sample-size victory for the two-stage method rings 

a bit hollow since that procedure does not guarantee 
our half-width requirement.

5.3. Fully sequential vs. batches

We evaluate the performance of the sequential method 
using batches of size B � 1. Batching will clearly result in 

Figure 6. Two-stage procedure vs. fully sequential procedure: Coverage and sample-size differences for initial sample sizes 
n1 ¼ m1 ¼ 35; half-widths � ¼ 0:01; 0:02; and 1 � α ¼ 0:95.

JOURNAL OF SIMULATION 13



a smaller number of stages compared to the one-at 
-a-time (B ¼ 1) procedure – since stages roughly corre-
spond to time expenditures. Thus, we will try to select the 
“best” batch size B? to balance the time savings achieved 
by batching against any deterioration in coverage or 
increase in total sample size. This is perhaps a win-win 
situation, because for small batch sizes B, we intuitively 
expect coverage and total sample-size results to be 
roughly the same as those arising from the B ¼ 1 case.

For ease of exposition, we discuss results for 
batches of sizes B ¼ 5, 10, and 20. In order to compare 
the batched procedure vs. the fully sequential proce-
dure, we simulated the previous 45 ðpx; pyÞ scenarios, 
using common random numbers as before. As 
expected, when B increased, the total number of obser-
vations required increased on average, but just mod-
estly. It turns out that moving from batch sizes of 5 to 
10 to 20 did not produce a clear change trend with 

Figure 7. Two-stage procedure vs. fully sequential procedure: Coverage and sample-size differences for initial sample sizes 
n1 ¼ m1 ¼ 100; half-widths � ¼ 0:01; 0:02; and 1 � α ¼ 0:95.
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respect to the coverage probability; and so we shall 
only give here a representative comparison for the 
case B ¼ 5.

Figure 8 illustrates the difference in performance 
between the one-at-a-time (B ¼ 1) fully sequential 
procedure and the batch procedure with B ¼ 5, 

both incorporating an initial sample of tentative size 
10. For most of the 45 scenarios, the numbers of 
observations required by the batch method are 
approximately equal to those required by the one-at 
-a-time sequential method (the figure merely shows 
noise around the horizontal blue line at 0); and the 

Figure 8. One-at-a-time fully sequential procedure vs. batched procedure: Coverage and sample-size differences for initial sample 
sizes n1 ¼ m1 ¼ 10; batch size B ¼ 5; half-widths � ¼ 0:01; 0:02; and 1 � α ¼ 0:95.

JOURNAL OF SIMULATION 15



coverages are also approximately equal for the B ¼ 1 
and B ¼ 5 cases. We also note that the differences 
between the B ¼ 1 and B ¼ 5 cases in terms of total 
observations are typically small (compared to the 
differences between the fully sequential B ¼ 1 
method vs. the naive two-stage procedure, as 

discussed earlier). Figure 9 shows the same compar-
ison, but for initial samples of tentative size n1 ¼ 35. 
Under this scenario it is easy to see that the coverage 
is also preserved, but now the batching method seems 
to need just a few extra observations compared to the 
fully sequential procedure (as more dots lie below the 

Figure 9. One-at-a-time fully sequential procedure vs. batched procedure: Coverage and sample-size differences for initial sample 
sizes n1 ¼ m1 ¼ 35; batch size B ¼ 5; half-widths � ¼ 0:01; 0:02; and 1 � α ¼ 0:95.
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horizontal blue line at 0). This very minor increase in 
the number of observations is almost certainly worth 
the trouble if “time” is considered as a performance 
measure – because B ¼ 5 requires only about 1/5 of 
the stages needed by the fully sequential B ¼ 1 
method.

6. Conclusions

This paper analysed various versions of the classi-
cal confidence interval for the difference between 
two Bernoulli success parameters, namely, fixed- 
sample-size, two-stage, fully sequential, and 
batched-sequential procedures. The analysis was 
undertaken via exact and Monte Carlo methods, 
where we examined the attained coverage, attained 
half-width, and required sample sizes. Our proce-
dures generally conducted sampling in an intelli-
gent way, in that we proposed a greedy heuristic 
(based on the estimated sample standard devia-
tions of the two populations) that aimed to reduce 
the CI half-width as much as possible from stage 
to stage.

We found that for very small sample sizes, the 
various procedures under study often missed their 
target coverage, either undershooting or over-
shooting – this is a well-known phenomenon aris-
ing from the discreteness of the two Bernoulli 
populations. As the sample sizes increased, the 
coverages were often slightly below nominal for 
the sequential procedures (also a well-known phe-
nomenon); but as the sample sizes increased 
further, then the nominal coverages were, for all 
practical purposes, obtained. Our intelligent heur-
istic procedures achieved (statistically) the same 
coverage as the corresponding optimised two- 
stage procedure, yet with smaller expected sample 
sizes for some of the probability pairs (px; py), 
particularly those heavily unbalanced; and the 
batched-sequential procedure saves on the antici-
pated number of stages at the cost of only 
a relatively insignificant increase in the total num-
ber of observations.

As we mentioned above, it is often the case that 
for small sample sizes, Bernoulli CIs undershoot or 
overshoot the intended coverage. Future research 
will consider elementary corrections along the lines 
of Agresti and Coull (1998) to mitigate these issues. 
In addition, one can also improve small-sample per-
formance if one has reasonable (i.e., at least 
“rough”) information about the values of px and py 
before sampling begins; to this end, one could adopt 
a Bayesian approach or the “tandem” approach 
taken by Yaacoub et al. (2019a) for the one- 
parameter CI case. In addition, we will study true 
optimal procedures in the spirit of the one- 
dimensional methodology of Yaacoub et al. 

(2019b). Finally, in many applications, particularly 
in the context of discrete-event computer simula-
tion, one is interested in the case in which the 
components of the pair (Xi;YiÞ are correlated. For 
instance, determine which of two competing inven-
tory policies is more likely to fulfill an order on- 
time – a case that can be tested via simulation using 
the same customers thanks to common random 
numbers. This is the subject of an ongoing sister 
paper.
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