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Motivated by applications in e-commerce logistics and production planning where orders (or items, or jobs) arrive at

different times and must be dispatched or processed in batches, we consider a multi-vehicle dispatching problem that

captures the tension between waiting for orders to arrive and the economies of scale due to batching. Our model extends

the single-vehicle work in Erazo and Toriello (2024), and we focus primarily on the case of identical vehicles with

submodular dispatch times. We propose four different mixed-integer programming formulations to solve this problem;

we analyze the complexity of solving each formulation’s linear relaxation, study the quality of the corresponding bounds,

and leverage column generation to create heuristics. Moreover, we analyze solutions where all batches are intervals of

consecutive orders, and identify two classes of functions for which such a solution is optimal. Finally, we computationally

test our methods on applications in machine scheduling with family setups and same-day delivery.
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1. Introduction

Retail e-commerce sales have increased significantly over the past few years, reaching a worldwide total

of $5.2 trillion in 2021, expected to grow to $8.1 trillion by 2026 (Statista 2023b). This growth has put

a spotlight on last-mile delivery, the last portion of the order fulfilment process, which can represent up

to 50% of total logistics costs (Vanelslander, Deketele, and Hove 2013). Last-mile delivery systems are

increasingly complex because of the scale of operations and the customers’ desire to have faster deliveries,

as evidenced by 22% of customers dropping online shopping sessions because shipping is too slow (Forbes

2023), and by a surging same-day delivery market that is expected to grow by over 100% in the next four

years (Statista 2023a). In particular, same-day delivery (SDD) systems are difficult to design and operate

because the order arrival and packaging process overlaps significantly with the dispatching and delivery
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process, increasing the system’s dynamism and reducing opportunities to consolidate orders and decrease

routing costs (Klapp, Erera, and Toriello 2020).

A common element in many processes within an e-commerce supply chain, including same-day delivery

(SDD), order picking and shelf re-stocking, is the need to dispatch (i.e. deliver, process, pick or re-stock)

orders or items that become available at different times, but where batching yields economies of scale

in dispatching time. This also characterizes many production systems, when jobs or tasks arrive over the

workday and are batched to distribute the workload between multiple machines/servers and benefit from

economies of scale.

Submodular set functions are often used to model the economies of scale that arise in these and other

applications; their properties have been widely studied by the combinatorial optimization community (e.g.

Krause and Golovin 2014, Nemhauser and Wolsey 1999, Schrijver 2003). Submodular functions are char-

acterized by their “discrete concavity”: the marginal change in value from adding an element to a subset

decreases as the subset includes more elements. In formal terms, for a ground set N := {1,2, . . . ,n} and

function f : 2N → R, f is submodular if

f (S∪S′)+ f (S∩S′)≤ f (S)+ f (S′), S,S′ ⊆ N.

In many applications, submodular functions are also non-negative and monotonically non-decreasing,

f (S) ≤ f (S′) for S ⊆ S′ ⊆ N, and the latter implies the former if f (∅) = 0. These conditions also imply

subadditivity: f (S∪S′)≤ f (S)+ f (S′) for all S,S′ ⊆ N with S∩S′ =∅.

Recently, Erazo and Toriello (2024) proposed the Subadditive Dispatching Problem (SAD) to model the

tension between economies of scale due to batching and idle time due to waiting for orders. They focused on

the case in which one vehicle (or picker, or server) dispatches or processes orders, and considered the class

of subadditive functions to define the dispatch times. In this paper, we consider the problem with multiple

vehicles, and focus on the scenario where they are identical. This problem can be studied through the lens of

subadditivity; however, as we are motivated by applications in machine scheduling and same-day delivery

where submodularity is a key component, we define and study the problem with submodular functions.
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1.1. Problem Definition and Applications

The Multi-Vehicle Submodular Dispatching Problem (MSMD) is characterized by a finite set of orders N

that must be dispatched or processed, where each order has a release time. The orders are dispatched by a set

M of vehicles (servers), where each vehicle k ∈M has an associated non-negative, monotone, submodular

set function fk : 2N → R+. Depending on the context, e.g. delivery or production, N and f may represent

different things; for clarity of exposition we adopt delivery terminology throughout the rest of the paper.

Thus, N is a set of orders, a subset S⊆ N is a batch of orders, and fk is the dispatch time function of vehicle

k, representing the time required to deliver the orders in batch S, starting from and returning to the depot.

The goal is to partition the order set N into batches that the multiple vehicles can dispatch while minimizing

the makespan, the end time of the last dispatch. Finally, when fk = f for all vehicles k ∈M, we are under

the identical vehicles scenario, a common occurrence in real-world problems, and the main focus of this

paper.

Suppose each order i ∈ N is associated with a number τi > 0; the following are some important special

cases of MSMD:

• f (S) = g
(
∑i∈S τi

)
, where g :R+→R+ is a non-decreasing concave function with g(0) = 0. In particular,

when τi = 1 for all i∈N, f is a function of the batch’s cardinality. The specific case f (S) = a+b|S|+c
√
|S|,

for S ̸=∅ and a,b,c≥ 0 is a continuous approximation of expected routing and delivery time, used to model

average-case SDD system behavior and to perform tactical design of SDD systems with multi-vehicle fleets

(Banerjee, Erera, and Toriello 2022, Banerjee et al. 2023, Stroh, Erera, and Toriello 2022). MSMD allows

arbitrary and non-stationary order arrivals, unlike most previous work.

• Consider a set of nodes V with N ⊆ V , a depot node 0 and an undirected network (V ∪{0},E) with

non-negative edge lengths. For S ⊆ N, define f (S) as the optimal length of a Steiner traveling salesman

problem (TSP) through S∪{0}; a Steiner TSP tour must visit nodes S∪{0} but may also visit other nodes in

the graph. With this function, MSMD captures operational SDD models in which same-day deliveries must

be made to locations N in the network, where different orders are ready for delivery at different points in the

operating day (Klapp, Erera, and Toriello 2018b). The function f is submodular for the class of naturally
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submodular graphs (Herer and Penn 1995), which includes paths (Klapp, Erera, and Toriello 2018a), trees

and other similar topologies.

• If f (S) = ∑i∈S τi, MSMD generalizes the classical machine scheduling problem with serial batch-

ing (Graham 1969), still a subject of active study, e.g. Ghalami and Grosu (2019). Similarly, if f (S) =

maxi∈S{τi}, MSMD generalizes the machine scheduling problem with parallel batching, which has received

significant attention because of its applications in semi-conductor production; see Fowler and Mönch (2022)

for a recent survey. MSMD allows for arbitrary release times in both models. Finally, suppose the order

set is partitioned into Q families F1, . . . ,FQ, with each family Fq having a setup time τq ≥ 0. With f (S) =

∑i∈S τi +∑q:Fq∩S ̸=∅ τq, MSMD generalizes serial-batching machine scheduling problems with family setups;

see e.g. Kramer, Iori, and Lacomme (2021).

1.2. Contributions and Organization

This paper extends Erazo and Toriello (2024) by considering multiple vehicles, with a focus on identical

vehicles. Even in special cases, this extension entails significant difficulty. For instance, for serial scheduling

on a single machine, the minimum makespan can be computed in linear time, but it is NP-Hard already with

two machines (Garey and Johnson 1979). We summarize our main contributions as follows:

1. We formulate the Multi-Vehicle Submodular Dispatching Problem (MSMD) and propose four dif-

ferent mixed-integer linear programming (MILP) formulations to solve MSMD. Two formulations extend

Erazo and Toriello (2024), whereas the other two specifically reduce or eliminate symmetry in the case of

multiple identical vehicles. We establish the complexity of solving the LP relaxation for each formulation.

2. We assess the quality of the lower bounds given by the LP relaxations of our formulations, and study

their worst-case performance.

3. We analyze the performance of interval solutions, in which batches consist of consecutive orders. We

discuss interval-solvable functions, for which there is always an optimal interval solution; MSMD with

these functions can be optimized with off-the-shelf solvers. This extends the concept of First-In First-Out

(FIFO) optimality (Erazo and Toriello 2024) to the multi-vehicle setting.

4. We perform a computational analysis for two applications: identical machine scheduling with serial

batching, family setups and release times, and tactical design of multi-vehicle SDD systems under hetero-

geneous order arrival rates. The former demonstrates the empirical effectiveness of our methods for solving
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large-scale instances of a known strongly NP-Hard problem, whereas the latter shows the practical insights

that can be derived from efficiently solving a model with an interval-solvable function.

The paper has the following organization. Section 2 presents a brief literature review, while Section 3

defines MSMD under the heterogeneous fleet scenario, formulates it as an MILP and discusses some pre-

liminary complexity results. Section 4 focuses on the identical vehicles scenario, presents three alternative

MILP formulations, their complexity results, and discusses the quality of their LP relaxation lower bounds.

This section also defines interval-solvable functions and provides examples. Section 5 summarizes our com-

putational studies, and Section 6 concludes and outlines future avenues of work. The appendix includes

proofs omitted from the main body of the paper.

2. Literature Review
2.1. Same-Day Delivery

Multiple operational models that arise in SDD systems have received significant attention, particularly

models that focus on dispatching, routing and delivery of orders. These problems have been studied under

different conditions, including deterministic or stochastic arrivals, single or multi-vehicle fleets, and differ-

ent objectives, such as minimizing total distance driven or minimizing makespan. The literature on SDD

models considers routing times in general road networks, e.g. Klapp, Erera, and Toriello (2018b, 2020),

Wölck and Meisel (2022), which are not submodular except in special cases such as paths (Klapp, Erera,

and Toriello 2018a, Erazo and Toriello 2024).

To study the average behavior of SDD and other last-mile distribution systems, continuous-time approx-

imations are being increasingly used for tactical-design; see Banerjee, Erera, and Toriello (2022), Banerjee

et al. (2023), Carlsson et al. (2021), Stroh, Erera, and Toriello (2022). Under reasonably mild conditions,

the expected routing time when locations are sampled randomly from a geographic distribution exhibits

economies of scale as the number of locations increases, growing in proportion to the square root of the

number of locations (Beardwood, Halton, and Hammersley 1959); when considering discrete arrivals, this

translates to submodularity. For a recent survey on applications of continuous approximations in logistics,

see Franceschetti, Jabali, and Laporte (2017). This article contributes to the tactical design SDD literature

by considering a multi-vehicle setting with arbitrary arrival rates, which was generally not accommodated

by previous work.
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2.2. Machine Scheduling

Machine scheduling problems concern the assignment and processing of jobs on a machine, often one

of several, with typical objectives such as minimizing makespan, lateness, weighted completion times,

etc. MSMD generalizes three machine scheduling paradigms: (i) parallel batching, (ii) serial batching, and

(iii) family setups. The parallel-batching problem requires batches to be assigned to machines, with the

processing time of a batch being the longest processing time among jobs in the batch. This problem has

received attention for its applications in semiconductor production; see Chang, Damodaran, and Melouk

(2004), Tian et al. (2009). Recently, Muter (2020) studies the problem without release dates, and Fowler

and Mönch (2022) presents a survey.

The serial-batching problem also requires batches of jobs to be assigned to machines; however, the pro-

cessing time of a batch is just the sum of processing times of jobs in the batch. This problem has been

studied since the 1960’s, with seminal heuristic work by Graham (1969), Garey and Johnson (1978), and

relevant complexity results in the 70’s (Garey and Johnson 1979). Work continues to this day in heuristics

(Kuruvilla and Paletta 2015, Habiba et al. 2019), exact algorithms (Dell’Amico et al. 2008), and approxi-

mation algorithms (Ghalami and Grosu 2019).

Extending the serial-batching problem, researchers have studied variants where the processing time func-

tion exhibits economies of scale, such as with family setups. Family setup times plus release times were

considered for the first time by Schutten, Van De Velde, and Zijm (1996). Recent work includes Pessan and

Néron (2011), Schaller (2014); in particular, Kramer, Iori, and Lacomme (2021) focus on family setups,

but under the weighted completion time objective and without release times. As in this article, they develop

multiple MILP formulations; however, their models are of pseudo-polynomial size.

We contribute to this literature by proposing MILP formulations that generalize various machine schedul-

ing problems, including serial batching, parallel batching, and batching with family setups. In particular,

our methods allow us to study these problems through the same lens and to accommodate mixed-batch pro-

cessing problems (combinations of serial, parallel, and family batch problems); this has been identified as a

gap in the literature (Fowler and Mönch 2022).
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2.3. Submodular Optimization

Submodular functions have been extensively studied in combinatorial optimization (e.g. Krause and

Golovin 2014, Nemhauser and Wolsey 1999, Schrijver 2003), and can be minimized in polynomial time

(Iwata, Fleischer, and Fujishige 2001, Schrijver 2000); however, most other submodular optimization prob-

lems are NP-Hard. Many applications require the ground set to be partitioned while optimizing over a

different objective, and often with additional side constraints; see Bogunovic et al. (2017), Chekuri and Ene

(2011), Hirayama et al. (2023), Wang et al. (2021). In particular, MSMD seeks a partition of the ground

set of orders N into batches, and an assignment of those batches into vehicles to minimize the makespan, a

scheduling objective; to the best of our knowledge, this is novel in the submodular optimization literature.

3. Model Formulation and Preliminaries

The Multi-Vehicle Submodular Dispatching Problem (MSMD) is characterized by an order set N :=

{1,2, . . . ,n}, where each order i ∈ N has a release time ri ≥ 0, and by a vehicle set M := {1,2, . . . ,m},

where each vehicle k ∈M is associated with a non-decreasing, submodular set function fk : 2N → R+ with

fk(∅) = 0. By translating and relabeling, we may assume 0 = r1 ≤ r2 ≤ ·· · ≤ rn. Each order must be

assigned to a batch, each batch assigned to a vehicle, and a vehicle’s dispatches need to be scheduled so

that they do not overlap in time; the goal is to minimize the makespan. Formally, a solution is an ordered

list of vectors, where vector k ∈M indicates the batches S ⊆ N that vehicle k dispatches, and the departure

time of each dispatch. Define batch collections Ni := {S ⊆ {1, . . . , i} : i ∈ S} for all i ∈ N; these collec-

tions partition the power set of N,
⋃

i∈N Ni = 2N ; vehicle k’s dispatch vector has 2n coordinates with values

(t1,k,S1,k, . . . , tn,k,Sn,k), where Si,k ∈Ni∪{∅}; if Si,k ̸=∅, then ti,k represents the departure time of batch Si,k

dispatched by vehicle k. Using this structure, we expand the MILP formulation from Erazo and Toriello

(2024) to the heterogeneous multi-vehicle case. We consider the following variables:

xS,k ∈ {0,1}: indicates if batch S⊆ N is dispatched by vehicle k ∈M.

ti,k ≥ 0: departure time of the i-th dispatch by vehicle k ∈M, if it occurs, for i ∈ N.

z≥ 0 : makespan.
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PROPOSITION 1. MILP (1) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i ∈ N, ∀k ∈M (1a)

ti+1,k ≥ ti,k + ∑
S∈Ni

xS,k fk(S) ∀i≤ n−1, ∀k ∈M (1b)

z≥ tn,k + ∑
S∈Nn

xS,k fk(S) ∀k ∈M (1c)

∑
k∈M

∑
S⊆N
S∋i

xS,k = 1 ∀i ∈ N (1d)

z≥ 0, t ≥ 0,x ∈ {0,1}.

Next, we establish some complexity for MSMD.

PROPOSITION 2. MSMD is strongly NP-Hard even if all release dates are equal, vehicles are identical

and dispatch times are modular.

Proof: If r1 = · · ·= rn = 0 and fk(S) = f (S) = ∑i∈S τi for all k ∈M and S⊆N, our problem corresponds

to serial scheduling on identical machines, proved to be strongly NP-Hard by Garey and Johnson (1979). ■

PROPOSITION 3. MSMD is strongly NP-hard even if the batches are fixed.

Proof: This again corresponds to a serial scheduling problem on identical machines. ■

PROPOSITION 4. Assume the batches are fixed and each batch is assigned to a vehicle. Then the

makespan can be computed in O(mn) time, even for heterogeneous vehicles.

Proof: Erazo and Toriello (2024) proved that when the assignment of batches to a vehicle is given, the

makespan of that vehicle can be computed in O(n) time. If we perform the procedure sequentially for all

vehicles we get an O(mn) algorithm. ■

We next consider a simple lower bound; let [i, j] := {i, i+1, . . . , j} denote an interval batch.

PROPOSITION 5. The value maxi∈N

{
ri + mink∈M{ fk([i,n])}/min{m,n− i + 1}

}
is a lower bound for

MSMD.
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Proof: At time ri, only orders 1, . . . , i−1 can be dispatched. From submodularity, the remaining total

dispatch time across all vehicles cannot be less than mink∈M{ fk([i,n])}. Even if orders 1, . . . , i−1 have been

dispatched, there are still n− i+1 orders left, so the number of vehicles that can be used to dispatch them

is the minimum between m and n− i+ 1. We obtain a lower bound by assuming that the workload can be

perfectly divided among the maximum number of vehicles that can be used for these dispatches. ■

Formulation (1) has O(m2n) x variables Therefore, we require column generation to solve the LP relax-

ation of this problem.

PROPOSITION 6. The linear relaxation of (1) can be solved in polynomial time.

Proof: We relax the binary domain for each xS,k variable to non-negativity, and consider the dual linear

program of (1). Let α be the dual variable for (1a), β for (1b) and (1c), and γ for (1d). The dual constraints

corresponding to the (relaxed) x variables are

−βi,k fk(S)+∑
j∈S

γ j ≤ 0, i ∈ N,k ∈M,S ∈Ni.

For each i ∈ N,k ∈M, the separation problem of the dual linear program is then

min
S∈Ni

{
βi,k fk(S)−∑

j∈S

γ j

}
= min

S⊆[1,i−1]

{
βi,k fk(S∪ i)− γi−∑

j∈S

γ j

}
.

As all functions fk are submodular, each of these optimization problems is a submodular minimization

problem, which can be solved in polynomial time in the oracle model (Schrijver 2003), and we need to solve

a polynomial number of them. From the equivalence of separation and optimization (Grötschel, Lovász,

and Schrijver 1993), it follows that the LP relaxation of (1) can be solved in polynomial time. ■

Formulation (1) has significant symmetry, because it has k variables for each subset S ⊆ N; that is also

reflected in the separation problem for each i∈N,k ∈M. In Section 4, we present formulations that alleviate

those issues.

4. Identical Vehicles
4.1. Symmetry-Reducing Formulation

We leverage the fact that all vehicles have the same dispatch time function to create a new formulation that

only has one variable for each subset of orders S⊆ N. The new formulation has the following variables:
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xS ∈ {0,1}: indicates if batch S⊆ N is dispatched.

ti,k: departure time of the i-th dispatch by vehicle k ∈M, if it occurs, for i ∈ N.

z: makespan.

wi,k: departure time of i-th dispatch assigned to machine k, if it occurs, for i ∈ N, k ∈M.

yi,k ∈ {0,1}: indicates if the i-th dispatch is performed by vehicle k ∈M.

Intuitively, instead of choosing the batches and assignments simultaneously with variables xS,k as in (1), we

make the batch decisions with variables xS and the assignment decisions with variables wi,k and yi,k.

PROPOSITION 7. MILP (2) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i ∈ N, ∀k ∈M (2a)

ti+1,k ≥ ti,k +wi,k ∀i≤ n−1, ∀k ∈M (2b)

z≥ tn,k +wn,k ∀k ∈M (2c)

m

∑
k=1

wi,k = ∑
S∈Ni

xS f (S) ∀i ∈ N (2d)

wi,k ≤ yi,k f ([1, i]) ∀i ∈ N, ∀k ∈M (2e)

m

∑
k=1

yi,k ≤ 1 ∀i ∈ N (2f)

∑
S⊆N:S∋i

xS = 1 ∀i ∈ N (2g)

z≥ 0, t ≥ 0, w≥ 0, y ∈ {0,1}, x ∈ {0,1}.

Furthermore, its linear relaxation can be solved in polynomial time.

The proof can be found in Appendix A.1. Formulation (2) significantly reduces the number of batch

variables x, but adds new variables w, y and new big-M constraints. Despite adding those new variables and

constraints, the LP relaxation can be solved in polynomial time, just as the one from (1). We now compare

the quality of the lower bounds and solutions generated by the relaxations.
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THEOREM 1. The linear relaxations of formulations (1) and (2) have equal optimal values. Moreover,

given an extreme point feasible solution for one of the linear relaxations, we can obtain a feasible solution

for the other linear relaxation in polynomial time.

The proof is presented on Appendix A.2. Theorem 1 implies we can interchangeably solve the LP relax-

ation of either formulation. We can therefore solve the pricing problem for (2), which requires O(n) submod-

ular minimizations instead of O(mn). Formulation (2) keeps the same quality for the LP bound, eliminates a

significant number of variables, and also reduces the number of separation problems to be solved; however,

it also introduces some symmetry with variables w,y. Next, we present a result we use as basis for two other

formulations for MSMD.

PROPOSITION 8. Consider an instance of MSMD with n ≥ m orders. Without loss of optimality, each

vehicle performs at least one dispatch.

Proof: Assume by contradiction that some vehicle performs no dispatches; then there must be at least

one vehicle that performs two dispatches, or that has a dispatch with more than one order. In the former

scenario we can assign one of the multiple dispatches to a vehicle that has no dispatches, and the makespan

cannot increase. In the latter scenario we can split the batch into two sub-batches, both with smaller or equal

dispatch time because of f ’s monotonicity. Then, by assigning one of the sub-batches to the idle vehicle,

we cannot increase the makespan. ■

4.2. Flow-Based Formulation

Using Proposition 8, we propose a flow-based formulation for MSMD. We introduce a dummy source node

indexed by 0 and a dummy sink node indexed by n+1. We minimize the makespan while sending m units

of flow from the source node to the sink node; each unit of flow will go through a path that represents the

dispatch schedule of a vehicle. This formulation’s variables are:

xS ∈ {0,1}: indicates if batch S⊆ N is dispatched.

ti: departure time of the i-th dispatch, if it occurs, for i ∈ N.

z = tn+1: makespan.
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yi j ∈ {0,1}: indicates if the i-th dispatch is performed immediately before the j-th dispatch by the same

vehicle, for 0≤ i < j ≤ n+1.

PROPOSITION 9. Formulation (3) solves MSMD:

min z = tn+1

s.t. ti ≥ ri ∀i ∈ N (3a)

∑
i∈N

y0,i = m (3b)

∑
i∈N

yi,n+1 = m (3c)

∑
S⊆N:S∋i

xS = 1 ∀i ∈ N (3d)

∑
S∈Ni

xS =
i−1

∑
j=0

y j,i ∀i ∈ N (3e)

i−1

∑
j=0

y j,i =
n+1

∑
j=i+1

yi, j ∀i ∈ N (3f)

t j ≥ ti + ∑
S∈Ni

f (S)xS− (1− yi, j) f ([1, i]) ∀(i, j) : 1≤ i < j ≤ n+1 (3g)

t ≥ 0, yi j ∈ {0,1}, x ∈ {0,1}.

Furthermore, the linear relaxation can be solved in polynomial time.

The proof can be found in Appendix A.3. The presence of big-M constraints causes this formulation to

have a weak LP relaxation in some instances.

4.3. Set Cover Formulation

For a set cover formulation, we consider slightly redefined variables xS,k that indicate the complete set of

orders S dispatched by some vehicle, potentially in multiple batches. The formulation has the following

variables:

xS,k ∈ {0,1}: if orders S⊆ N are dispatched by vehicle k ∈M, possibly in multiple dispatches.

z: makespan.

We denote the optimal makespan of a single-vehicle SMD dispatching orders S⊆ N as SMD(S).
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PROPOSITION 10. Formulation (4) solves MSMD:

min z

s.t. z≥ ∑
S⊆N

SMD(S)xS,k ∀k ∈M (4a)

∑
S⊆N

xS,k = 1 k ∈M (4b)

∑
k∈M

∑
S⊆N,S∋i

xS,k = 1 ∀i ∈ N (4c)

x ∈ {0,1},z≥ 0.

Proof: Because of constraint (4c), vector x partitions the order set N. Constraint (4b) makes sure we

assign one batch to each vehicle, and the correctness of the formulation comes from the fact that SMD(S)

returns a feasible solution for a single vehicle dispatching S; therefore, each vehicle has a feasible schedule.

■

Unlike many set cover formulations, (4) includes multiple copies of each set variable, one per vehicle

k ∈ M. This symmetry is unavoidable because of the makespan objective and constraints (4a); if we used

only one copy of each set variable, we would need exponentially many constraints to define the makespan.

Next, we discuss a simplification of the formulation.

PROPOSITION 11. Constraints (4b) can be aggregated into a single constraint, ∑k∈M ∑S⊆N xS,k =m, with-

out affecting the formulation’s correctness or the optimal value of the LP relaxation.

Proof: Suppose an integer optimal solution has xS1,k = xS2,k = 1. Since ∑k∈M ∑S⊆N xS,k =m, there is some

k′ ∈ M with xS,k′ = 0 for all S ⊆ N. We can reassign either S1 or S2 to k′ without loss of optimality. Now

consider an optimal solution (x,z) for the linear relaxation with the aggregated constraint. Define a solution

(x′,z) with x′S,k = (1/m)∑k∈M xS,k, for all S ⊆ N and k ∈M. As x defines a fractional partition of N, x′ does

also, so (4c) holds. From construction, (4b) holds, and the right-hand sides of all constraints (4a) for x′ are

equal, hence no larger than the largest right-hand side among (4a) for x; therefore, the fractional makespan

with x′ cannot be larger. ■
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From now on, we use (4) to refer to the formulation with the aggregated version of constraint (4b), as it

simplifies the analysis. Consider the linear relaxation of (4) where we relax the binary domain for each xS,k.

Let α be the dual variable of (4a), β be the dual variable of (4b) and γ be the dual variable of (4c). The dual

constraints corresponding to the (relaxed) x variables are −αk SMD(S)+β +∑i∈S γi ≤ 0, for all S ⊆ N and

k ∈M. For each k ∈M, the separation problem for these constraints is then

min
S⊆N

{
αk SMD(S)−β −∑

i∈S

γi

}
. (5)

Erazo and Toriello (2024) proved that computing SMD(N) is in general strongly NP-Hard; thus the separa-

tion problem is strongly NP-Hard. We next study the complexity of (5) under additional assumptions.

PROPOSITION 12. Suppose all orders have the same release time; then (5) can be solved in polynomial

time.

Proof: We may assume that ri = 0 for all i∈N. From subadditivity we have SMD(S) = f (S) for S⊆N.

As f is submodular and αk ≥ 0, the separation problem is submodular minimization. ■

Conversely, if we have arbitrary release times the problem becomes significantly harder, even for modular

functions f , as we prove in the next theorem.

THEOREM 2. Suppose each order i ∈ N is associated with a value τi > 0, and let f (S) = ∑i∈S τi; this

corresponds to scheduling on identical serial machines with release times. The separation problem (5) is

NP-Hard.

We use a reduction from the knapsack problem; see Appendix B.1. Theorem (2) establishes that the sep-

aration problem is NP-Hard even for modular functions f ; nevertheless, this special case and its extensions

to serial-batch scheduling with release times have a pseudo-polynomial separation algorithm, which allows

us to solve the LP relaxation in reasonable time in certain cases.

THEOREM 3. Suppose each order i∈N is associated with a value τi > 0, and consider a fixed setup time

τ0 ≥ 0. For f (S) = τ0 +∑i∈S τi, (5) can be solved in pseudo-polynomial time. If ri, τi are integer for i ∈ N,

and given an integer upper bound U for SMD(N), the complexity of solving (5) is O(Un2); moreover, if

τ0 = 0, the complexity is O(Un).
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The proof is in Appendix B.2. Finally, we can also extend our complexity result to the serial-batch

scheduling problem with family setups.

THEOREM 4. Suppose each order i∈N is associated with a value τi > 0; assume Q families F1,F2, . . . ,FQ

partition order set N, and each family q has a setup time τq ≥ 0. For f (S) = ∑i∈S τi +∑q:Fq∩S ̸=∅ τq, (5)

can be solved in pseudo-polynomial time. Let U be an integer upper bound on SMD(N), and define Uq =

τq +∑ j∈Fq τ j for q = 1, . . . ,Q. If vectors r,τ are integer, the complexity is O
(

nU
[
∏

Q
q=1 Uq|Fq|

])
.

The proof is in Appendix B.3.

4.4. Interval-Solvable Functions

We define a solution to be of interval type, or simply an interval solution, if its batches all have a minimum

index i, a maximum index j, and the batch contains all orders in the interval [i, j]. A function f is interval-

solvable if all instances defined by f have an optimal interval solution.

THEOREM 5. Suppose each i ∈ N is associated with a number τi > 0. Moreover, consider some τ0 ≥ 0

and a concave non-decreasing function g : R→ R with g(0) = 0. The following functions are interval-

solvable: (1) f (S) = τ0 +maxi∈S{τi} and (2) f (S) = τ0 + g(|S|). Furthermore, f (S) = ∑i∈S τi is not only

interval-solvable, it suffices to consider singleton batches.

The proof is in appendix C. Theorem 5 verifies that some important classes of functions are interval-

solvable; for instance, (1) includes parallel-batch scheduling with setups on identical machines, and (2)

includes tactical design of SDD systems with identical vehicles.

4.5. Formulation Comparison

Table 1 presents a comparison of formulations (1) through (4) based on their numbers of constraints and

variables, differentiating between the general case and the interval-solvable case. Depending on the function

f and the number of vehicles m, the trade-offs between formulations vary significantly. In particular, when f

is interval-solvable (or singleton-solvable), (1) becomes more attractive because of its relatively low number

of constraints and lack of big-M coefficients.

With respect to the linear relaxation bounds, (1), (3) and (4) are incomparable; we explore this question

computationally below in Section 5. Next, we study the multiplicative gap between these bounds and the

optimal solution; recall that the bounds provided by (1) and (2) are equal.
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Table 1 Comparison of the four proposed formulations by number of constraints and variables.

MILP (1) MILP (2) MILP (3) MILP (4)
Constraints 2nm+n 3nm+3n 0.5n2 +4.5n+2 m+n+1

Variables
General problem m(2n−1)+nm+1 2n +3nm 2n +0.5n2 +2.5n m(2n−1)+1
Interval-solvable 0.5mn2 +1.5nm+1 0.5(n2 +n)+3nm+1 n2 +3n+1 0.5m(n2 +n)+1

Singleton-solvable 2nm+1 n+3nm+1 0.5n2 +3.5n+1 mn+1

PROPOSITION 13. Let z∗I be the optimal makespan of MSMD for an instance I with m vehicles and n≥m

orders. Let zLP(1)
I , zLP(3)

I , zLP(4)
I be the optimal (fractional) makespan of the linear relaxations of (1), (3) and

(4), respectively, for instance I. Even when f is modular and all release times are zero, there exists a family

of instances I1, I2, . . . such that limh→∞ z∗Ih/zLP(1)
Ih

= limh→∞ z∗Ih/zLP(4)
Ih

= m, and limh→∞ z∗Ih/zLP(3)
Ih

= ∞.

The proof is in Appendix D.1. Our next result shows that for modular functions, the lower bound provided

by the linear relaxation of (1) is dominated by the lower bound from Proposition 5.

PROPOSITION 14. Let each order i ∈ N be associated with a value τi > 0, and let f (S) = ∑i∈S τi. The

lower bound presented in Proposition 5 is greater than or equal to the lower bound given by the linear

relaxation of (1).

The proof is in Appendix D.2. This result indicates that our formulations may sometimes be weak com-

pared to combinatorial bounds that exploit the structure of f and other problem parameters. With this

motivation, we next propose a strengthening for set cover formulation (4).

THEOREM 6. Let LB be a lower bound for the optimal makespan. Constraint (4a) of formulation (4)

can be strengthened to z≥ ∑S⊆N max{SMD(S),LB}xS,k; furthermore, all previous complexity results on the

formulation remain unchanged.

The proof is in Appendix D.3. With this strengthening, the set cover formulation matches (or exceeds)

the worst-case performance of any of our lower bounds. For instance, by using LB = maxi∈N{τi}, we get an

optimal bound for the worst-case instances from Proposition 13.

5. Computational Study and Discussion

In this section we present two different sets of experiments. First, we verify the empirical efficacy of our

methods by considering the machine scheduling problem with serial batching and family setups, known to
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be strongly NP-Hard. Then, we focus on tactical design in same-day delivery, as these problems consider an

interval-solvable dispatch time function; the efficient solution of many related instances allows us to obtain

managerial insights for these systems.

5.1. Machine Scheduling - Serial Batching with Family Setups

In this experiment we study the quality of the linear relaxation lower bounds for our MILP formulations, the

quality of heuristics that rely on solving the LP relaxation with column generation, and the computational

performance and scalability of our methods. We test our algorithms with instances of serial-batch scheduling

on identical machines with family setups and release times, a strongly NP-Hard problem that is not interval-

solvable. Similar problems have been tackled in the machine scheduling literature; for example, Kramer,

Iori, and Lacomme (2021) recently considered instances with up to n = 80 for a similar problem without

release times and with a different objective, the weighted completion time.

For instance design, we use a similar setup to Kramer, Iori, and Lacomme (2021) and previous works:

the values τi are drawn from a uniform (integer) distribution with minimum value of 1 and maximum value

of 100; family setup times τq are drawn from a uniform (integer) distribution with minimum value of 0 and

maximum value of UF , which we vary over our experiments. Finally, the inter-arrival times between orders

are also drawn from a uniform (integer) distribution, with minimum value of 0, and maximum value of Ur.

We generate 25 instances for each parameter combination of (m,Q,UF ,Ur), and use Python 3.11, Gurobi

10.0.1 and a Windows machine with 16 GB of RAM and an Intel Core i7-12650H processor for our experi-

ments. We use the following notation to refer to the different bounds obtained from the LP Relaxations and

solutions we evaluate:

• IP: MILP formulation (1).

• LP (a): LP relaxation of MILP (a), solved with

column generation, for a = 1,3,4.

• CG IP (a): MILP (a) restricted to the columns

generated when computing LP (a), for a = 1,3,4.

• LBF: Lower bound based on Proposition 5, but

leveraging specific aspects of this problem. LBF is

detailed in Appendix E.1.

• LPS (4): LP relaxation for the strengthened set

cover formulation. The lower bound considered for

the strengthened constraints is LBF.
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• CGS IP (4): Strong set cover formulation con-

strained to the columns generated when solving

LPS (4).

• Interval IP: MILP (1) constrained to interval

batches, which is not guaranteed to be optimal.

For column generation methods, we use the acceleration technique from Ben-Ameur and Neto (2007).

For LP (1) we use the separation problem from (2), which does not differentiate by vehicle; for CG IP (4)

and CGS IP (4) we use an MILP to solve the separation problem, because preliminary tests showed this to

be faster than the algorithm from Theorem 4. Tables 2 and 3 show the results of our first set of instances,

where n = 15 and the goal is to compare our bounds versus the actual optimal solution, computed using (1);

a gap of 100% means the solution has the same objective as the actual optimal solution.

From Table 2 we see that LBF provides a strong bound, over 79.7% gap geometric mean for all sets of

instances with three machines, and over 90.4% for five. LPS (4) leverages LBF to further improve the bound

to a gap geometric mean of at least 95.9% for sets of instances with three and five machines. With respect

to the other bounds, (1), (3) and (4) are incomparable, but they complement each other. When m increases,

the gaps for (1) and (4) decrease, whereas the opposite happens for (3), LBF and LPS (4); the latter three

exceed an 87% gap geometric mean for all sets of instances with five vehicles. When Q increases, LBF and

LP (3) exhibit similar performance, whereas LP (1) and the two set-cover methods improve their bounds.

Larger values of UF translate to more savings due to batching; an increase in UF causes LP (1) to decrease

its performance; other LP methods have a worse performance if instances are dense (Ur = 25), but improve

when arrivals are sparse. Increases in Ur significantly reduce the quality of the set cover LP (4); but other

methods improve significantly. In particular, LP (3) has the highest increase, and performs better than LP

(1) under these conditions. With respect to running time, methods LP (1), LP (3) and LBF require less than

0.1 seconds on average for every instance set; on the other hand, LP (4) and LPS (4) take over 100 seconds

for some instances.

With respect to the heuristics, Table (3) indicates that the heuristics based on the set cover formulation

have very bad performance; this is because a very small number of columns are generated when solving

those LP’s. CG IP (1) performs particularly well, with a gap geometric mean of 104.5% at most, and a
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Table 2 Geometric and (worst) gap percentage for our lower bounds on instances with
n = 15, compared versus the MILP optimal solution.

Lower bounds’ performance, geometric (worst) gap %
m Q UF Ur LP (1) LP (3) LPS (4) LP (4) LBF

3

2
50 25 85.8 (81.6) 67.1 (52.9) 96.9 (94.7) 88.8 (76.6) 82.2 (76.9)

100 93.3 (87.7) 98.3 (88.0) 99.4 (97.0) 48.5 (38.9) 98.7 (93.4)

100 25 81.3 (72.1) 69.5 (45.0) 95.9 (93.4) 87.8 (93.6) 79.7 (72.0)
100 90.7 (85.2) 98.5 (84.0) 99.4 (93.6) 52.9 (40.1) 98.6 (86.2)

5
50 25 89.9 (84.8) 70.9 (54.5) 97.9 (95.7) 91.8 (85.1) 87.7 (80.5)

100 93.2 (86.8) 99.1 (89.6) 99.6 (95.9) 47.9 (37.5) 99.4 (93.8)

100 25 87.1 (82.7) 68.0 (49.4) 96.2 (91.2) 91.4 (81.3) 83.8 (77.2)
100 91.8 (83.0) 98.4 (91.6) 99.3 (96.2) 56.1 (47.3) 98.8 (94.3)

5

2
50 25 75.7 (68.8) 94.1 (78.1) 97.8 (92.3) 72.1 (54.5) 95.5 (84.7)

100 92.2 (85.9) 99.0 (93.1) 99.5 (96.5) 32.0 (24.6) 99.3 (95.6)

100 25 72.0 (64.5) 88.3 (59.0) 95.9 (90.4) 72.0 (56.0) 90.4 (73.5)
100 88.8 (82.1) 99.3 (90.6) 99.6 (96.1) 36.8 (25.4) 99.5 (95.1)

5
50 25 77.3 (67.7) 91.1 (58.1) 97.2 (88.7) 76.2 (52.4) 93.9 (77.8)

100 92.7 (86.9) 99.1 (93.6) 99.4 (95.6) 33.7 (24.5) 99.2 (94.5)

100 25 74.6 (68.9) 87.7 (47.5) 96.1 (87.8) 77.5 (65.0) 90.5 (68.7)
100 88.4 (82.4) 99.6 (95.6) 99.8 (97.5) 39.9 (26.4) 99.7 (96.6)

worst gap (over the 400 instances) of 122.4%. The Interval IP method also provides high-quality solutions

(maximum 108.0% gap geometric mean), and is better than CG IP (1) in some cases. With respect to

parameters, an increase in arrival sparsity (i.e. Ur increases) improves the heuristics substantially, with many

reaching optimality in almost all instances with Ur = 100. An increase in UF (i.e. savings due to batching)

decreases the performance of Interval IP, and also CG IP (1) though only slightly. When the number of

families increases, the gaps for CG IP (1) improve, whereas the opposite happens for the Interval IP solution.

Finally, when the number of machines increases, the gaps for CG IP (1) stay almost equal, whereas the gap

of Interval IP increases. With respect to running time, all methods solve within 0.1 seconds, except for CG

IP (3), which takes up to over 2 seconds.

For our large experiments, we consider n = 80,120,160; m = 5,10,15; Q = 5,10,15; UF = 25,100,

and Ur = 10,25; we select smaller values for Ur to benchmark against harder instances. Because of their

speed and empirical performance, we use LP (1) and LBF as lower bounds; in each instance we choose

the maximum value between the two as our benchmark. On the heuristic side, we keep CG IP (1) and the

Interval IP and report their performance. For all instances, we allow a run time of up to two minutes for

both heuristic methods. We summarize results in Figure 1, where each sub-figure depicts the performance

of a given heuristic, given a fixed value of m, and for n = 80,120,160. Our scenarios for (Q,UF ,Ur) are:
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Table 3 Geometric and (worst) gap percentage for our heuristics on instances with n = 15, compared
versus the MILP optimal solution.

Heuristics’ performance, geometric (worst) gap %
m Q UF Ur CG IP (1) CG IP (3) CGS IP (4) CG IP (4) Interval IP

3

2
50 25 104.5 (113.7) 115.2 (131.6) 246.2 (267.2) 230.6 (251.2) 104.1 (111.3)

100 100.0 (100.0) 100.0 (100.0) 130.0 (164.5) 130.0 (164.5) 100.0 (100.0)

100 25 103.5 (110.8) 134.7 (175.7) 231.1 (265.1) 222.1 (237.8) 108.0 (117.4)
100 100.0 (101.0) 100.9 (107.0) 135.5 (171.3) 135.5 (171.3) 100.1 (101.2)

5
50 25 100.4 (102.8) 108.6 (120.5) 257.8 (275.1) 227.1 (253.7) 104.2 (108.6)

100 100.0 (100.0) 100.0 (100.0) 128.8 (161.6) 128.8 (161.6) 100.0 (100.0)

100 25 100.8 (104.8) 122.5 (137.6) 249.7 (274.3) 221.6 (244.3) 109.9 (123.1)
100 100.0 (100.0) 100.1 (103.0) 146.4 (178.3) 146.4 (178.3) 100.0 (101.0)

5

2
50 25 100.2 (102.1) 101.3 (111.5) 279.5 (300.0) 174.9 (201.5) 100.6 (107.3)

100 100.0 (100.0) 100.0 (100.0) 124.0 (163.7) 123.8 (158.5) 100.0 (100.0)

100 25 103.5 (122.4) 107.1 (124.2) 265.5 (300.0) 178.4 (192.8) 101.8 (106.7)
100 100.0 (100.0) 100.0 (100.0) 135.6 (186.8) 134.5 (178.1) 100.0 (100.0)

5
50 25 100.1 (101.0) 100.7 (104.6) 281.4 (300.0) 174.6 (194.9) 100.5 (104.6)

100 100.0 (100.0) 100.0 (100.0) 132.6 (169.1) 132.4 (169.1) 100.0 (100.0)

100 25 101.3 (110.7) 106.2 (121.8) 271.7 (302.1) 176.9 (194.8) 103.4 (116.7)
100 100.0 (100.0) 100.0 (100.0) 153.6 (187.3) 151.9 (184.2) 100.0 (100.0)

1. (5, 50, 10)

2. (5, 50, 25)

3. (5, 100, 10)

4. (5, 100, 25)

5. (10, 50, 10)

6. (10, 50, 25)

7. (10, 100, 10)

8. (10, 100, 25)

9. (15, 50, 10)

10. (15, 50, 25)

11. (15, 100, 10)

12. (15, 100, 25)

Figures 1a, 1c and 1e detail results for CG IP (1), while the other figures do the same for the Interval

IP. The gap geometric means for CG IP (1) improve slightly when n increases; on the other hand, Interval

IP has difficulty handling large values of n, as evidenced by gaps over 200% for n = 160. In particular,

CG IP (1) achieves a gap geometric mean of 130% or less for all of our instance sets, and is within 1% of

optimality in every single even instance set (Ur = 25), for m = 10 and m = 15. With respect to the effect of

m, for both heuristics the worst-case and best-case gaps are amplified (i.e. worse and better, respectively)

when m = 10; this suggests a concave structure where the values near the middle have either very low or

very high gaps. With respect to Q, an increase seems to have a small positive effect for CG IP (1), and a

slight negative effect for Interval IP. Finally, with respect to running times, we limited both CG IP (1) and

Interval IP to run for at most two minutes; LP (1) required 44.7 seconds on average for n = 160, and 190

seconds for the worst instance set with n = 160; this shows we can obtain geometric gaps within 10% of

optimality for all instance sets with n = 160 in less than six minutes.
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(f) Interval IP, m = 15

Figure 1 Geometric gaps (%) of CG IP (1) and Interval IP, versus the best lower bound, for instance scenarios

1-12. Each figure contains curves n = 80, 120, 160, given a fixed value of m.
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5.2. Tactical Design for SDD

In our second set of experiments, we assess the impact on an SDD system when the size of the fleet

increases. In the SDD context, the makespan objective of MSMD corresponds to the length of the delivery

shift. Starting from a system with one vehicle and a shift length of φ ∗, we investigate how many extra orders

can be delivered if we increase the size of the fleet to m while ensuring the delivery shift length does not

exceed φ ∗. Moreover, we study the impact of increasing m on the structure of the optimal solution, i.e. the

expected number of routes and route durations by vehicle.

We consider an SDD system studied in Stroh, Erera, and Toriello (2022) with a service area of roughly

26 square miles in northeastern metro Atlanta; it includes 22 census tracts and has a population of 92,198 as

measured by the U.S. Census. The SDD system accepts orders between 9 AM and 2 PM; assuming 5% of

the population in the region uses the SDD service once every two months, 50 people place orders each day

on average. For this system, Stroh, Erera, and Toriello (2022) computed the dispatch-time function to be

f (S) = 10+1.5|S|+24
√
|S| minutes. In our baseline scenarios, we set r1 = 9 AM and r50 = 2 PM, a fleet

of a single vehicle, and three arrival patterns for the orders: (i) constant order arrival rate, every six minutes;

(ii) a U-shaped arrival rate: the first 15 orders arrive every two minutes, the next 20 orders arrive every 12

minutes, the last 15 orders arrive every two minutes; and (iii) arrivals concentrated towards the end of the

order window: the first 20 orders arrive every 12 minutes, the last 30 orders arrive every two minutes. For

these scenarios we use the algorithm from Erazo and Toriello (2024) to obtain the optimal solution for the

single-vehicle problem.

When m increases, the SDD system has a larger delivery capacity; thus, the order deadline can be delayed,

allowing more orders to be delivered while keeping a delivery shift length at or below φ ∗. For m > 1, we

use (1); as f is an interval-solvable function, we only need a quadratic number of variables and can use an

off-the-shelf solver. For our two tests, we consider the following arrival patterns after 2 PM: (A) new orders

arrive at a constant rate, every 6 minutes; and (B) new orders arrive at a constant rate, every 4 minutes.

Algorithm 1 details our procedure for tests A and B; we warm-up our solver and leverage dual bounds to

speed up the algorithm. Results for tests A and B under the different baseline scenarios are shown in Figure

2.
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Algorithm 1 Procedure to find the number of orders that can be dispatched with m vehicles
Notation: f : dispatch time function used.
FIFO(r, f ): optimal polynomial-time algorithm from Erazo and Toriello (2024) that returns the optimal
makespan for the single-vehicle SMD with arrival vector r and dispatch time function f .

Input: Initial arrival vector r (defined by the baseline scenario), structure of arrivals after original deadline
(defined by test A or B).

1: Vehicles← 1; Orders← 50; Previous Orders← 50; Results = [50]
2: Solve single-vehicle SMD, return original makespan φ ∗← FIFO(r, f )
3: Compute the maximum number of orders that can be dispatched under the particular (scenario, test)

pair, denoted Max Orders, by finding the latest order that can be dispatched by itself before φ ∗.
4: Vehicles← Vehicles + 1
5: while Orders ≤Max Orders do
6: Solve the SMD with (1), return makespan φ

7: if φ ≤ φ ∗ then
8: Orders← Orders + 1
9: Update arrival r by adding new order, according to the current test (A or B)

10: else
11: Vehicles← Vehicles + 1
12: Append value Orders-1 to list Results
13: end if
14: end while
15: Append value Max Orders to list Results
Output: List of Results. The i-th entry has the maximum number of orders that can be dispatched with i

vehicles while having a makespan φ ≤ φ ∗

As Figure 2 indicates, increasing m is more beneficial when the arrival rate for orders after the original 2

PM deadline is larger (test B). Furthermore, the benefits of increasing the fleet are also amplified when the

original order arrival process is concentrated towards the end of the order window, as in baseline case (iii).

This is due to two factors: first, the original solution has a larger makespan φ ∗ when the arrival process has

the orders concentrated towards the end of the ordering period, and second, it is easier to get economies of

scale due to batching with the new orders if the original orders are released later. Moreover, with respect

to test A in all baseline scenarios, 90% of the maximum number of orders can be dispatched with just two

vehicles, and over 95% with three vehicles; for test B, 80% of the maximum can be dispatched with two

vehicles, and 90% with three.
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Figure 2 Orders dispatched (y-axis) for different values of m, under tests A and B, and for all baseline cases.
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Figure 3 Structure of the solutions for test A, under baseline cases (i) and (iii).

We now focus on the impact of m on the optimal solution. Figure 3a shows the changes for test A under

baseline case (i), whereas Figure 3b does so for A under baseline case (iii). To obtain the structure of the

optimal solutions we use a modified version of (1), shown in Appendix E.2.

The structure of the optimal solution depends heavily on the order arrival pattern before the original

deadline. Figure 3a shows that for baseline scenario (i), increasing the fleet to two vehicles does not sig-
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nificantly affect the efficiency of dispatches in terms of their size, but the start time of the first dispatch is

delayed by almost 90 minutes. When increasing from two to four vehicles, the dispatch efficiency is sig-

nificantly reduced, and the first dispatch actually starts earlier. Figure 3b shows that under baseline case

(iii), increasing the fleet to two vehicles improves the balance between the cardinality of different batches,

and the start time of the first dispatch increases by over two hours. Increasing to four vehicles continues to

improve the overall efficiency of dispatches, but does so by decreasing the cardinality balance. Moreover,

the earliest departure time continues to increase, again by almost two hours. These results suggest that SDD

operational efficiency benefits more from a larger fleet under some order arrival patterns. In particular, some

SDD systems may have their dispatch balance improved, and may start their delivery operations later. In

fact, our results suggest that if more vehicles are added to the fleet, they may not need to be available for

the complete working day, and so they could be part of a shared fleet (between next-day and SDD), further

improving operational efficiency for carriers.

6. Conclusions

We studied the multi-vehicle submodular dispatching problem (MSMD) and focused on the case with iden-

tical vehicles, for which we proposed four different MILP formulations. MSMD includes several important

models as special cases, such as models for SDD tactical design, machine scheduling under serial-batching

and parallel-batching machines, and routing models under restricted topologies. We established the diffi-

culty of solving the LP relaxations of our formulations, and studied the quality of their bounds. In addition,

we proposed a strengthened version of a set cover formulation that can leverage any known lower bound

on the optimal makespan. Moreover, we characterized interval-solvable functions, which always have an

optimal solution of interval type, where batches consist of consecutive orders.

A computational study on serial-batching scheduling with family setups and release dates allowed us

to assess the performance of our lower bounds and heuristics. Our methods proved to be efficient from a

computational standpoint, achieving results within 10% of optimality with average running times below six

minutes for up to 160 jobs, an improvement over the recent literature for similar problems. Furthermore,

we used our formulations and results on interval-solvable functions to computationally study SDD tactical

design problems with non-stationary order arrival rates, deriving insights on fleet expansion benefits.
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Our results motivate several avenues for future research, including the use of meta-heuristics to enhance

our current solution methods, and new combinatorial lower bounds to leverage the structure of other dis-

patch time functions. More generally, the heterogeneous vehicle case presents additional challenges, as well

as the case in which batches are constrained, e.g. by cardinality.

Acknowledgments

The authors’ work was partially supported by the U.S. Office of Naval Research, grant N00014-18-1-2075.

References
Banerjee D, Erera A, Stroh A, Toriello A, 2023 Who has access to e-commerce and when? Time-varying service

regions in same-day delivery. Transportation Research Part B: Methodological 170:148–168.

Banerjee D, Erera A, Toriello A, 2022 Fleet Sizing and Service Region Partitioning for Same-Day Delivery Systems.
Transportation Science 56:1327–1347.

Beardwood J, Halton J, Hammersley J, 1959 The shortest path through many points. Mathematical Proceedings of the
Cambridge Philosophical Society 55(4):299–327.

Ben-Ameur W, Neto J, 2007 Acceleration of cutting-plane and column generation algorithms: Applications to network
design. Networks 49:3–17, URL http://dx.doi.org/10.1002/net.20137.
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Appendix A: Proofs for Formulations (2) and (3)

A.1. Formulation 2 Solves MSMD

PROPOSITION 7. MILP (2) solves MSMD:

min z

s.t. ti,k ≥ ri ∀i ∈ N, ∀k ∈M (2a)

ti+1,k ≥ ti,k +wi,k ∀i≤ n−1, ∀k ∈M (2b)

z≥ tn,k +wn,k ∀k ∈M (2c)

m

∑
k=1

wi,k = ∑
S∈Ni

xS f (S) ∀i ∈ N (2d)

wi,k ≤ yi,k f ([1, i]) ∀i ∈ N, ∀k ∈M (2e)

m

∑
k=1

yi,k ≤ 1 ∀i ∈ N (2f)

∑
S⊆N:S∋i

xS = 1 ∀i ∈ N (2g)

z≥ 0, t ≥ 0, w≥ 0, y ∈ {0,1}, x ∈ {0,1}.

Furthermore, its linear relaxation can be solved in polynomial time.

Proof: We prove the equivalence between feasible solutions for MILP (1) and (2). Assume we have a solution

(x1, t1,z1) for MILP (1); we construct a solution (x, t,z,y,w) for MILP (2). Set x, y and w as zero vectors, then:

• For all S⊆ N,k ∈M such that x1
S,k = 1, let i = max{ j : j ∈ S} and set variables xS = 1, yi,k = 1 and wi,k = f (S).

• For all i ∈ N,k ∈M set ti,k = t1
i,k and z = z1

As x1 forms a partition, then x satisfies constraint (2g). As it is a partition, for each i ∈ N there is at most one set

S ∈Ni such that xS = 1; therefore (2f) ∑
m
k=1 yi ≤ 1 holds. From construction, equality (2d) is met, and by monotonicity

inequality (2e) holds. Finally, from the definition of w and feasibility of t1, our new solution (x, t,z,y,w) satisfies

constraints (2a), (2b) and (2c). From construction, the makespan is equal to the makespan of solution (x1, t1,z1) for

MILP (1). Now consider a feasible solution (x, t,z,y,w) for MILP (2); we construct a solution (x1, t1,z1) for MILP (1):

• For all i ∈ N,k ∈M set t1
i,k = ti,k, then set z1 = z and x as a zero-valued vector.

• Find all subsets S ⊆ N such that xS = 1. For each of those sets S, compute its maximum index order. Because of

non-negativity of f and (2e), there is exactly one machine k such that yi,k is equal to one and wi,k = f (S). Set x1
S,k = 1.
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By definition of w, inequalities (2a), (2b) and (2c) correspond to inequalities (1a), (1b) and (1c) in MILP (1). As x is a

partition, then x1 is as well and (x1, t1,z1) is feasible and has the same makespan as solution (x, t,z,y,w) for MILP (2).

Now we focus on the linear relaxation of this formulation with non-negative (instead of binary) domains for x and y.

We consider the dual of the linear relaxation of (2) and let α be the dual variable of (2a), β be the dual variable of (2b)

and (2c), ε be the dual variable of (2d), φ be the dual variable of (2e), π be the dual variable of (2f) and finally γ be

the dual variable of (2g). The dual constraints corresponding to the (relaxed) x variables are−εi f (S)+∑ j∈S γ j ≤ 0, i ∈

N,S ∈Ni, and therefore the separation problem is minS∈Ni

{
εi f (S)−∑ j∈S γ j

}
. Constraint (2d) can be replaced with

a greater-than-or-equal constraint without loss of optimality, and thus we may assume ε ≥ 0. Therefore, the separation

problem corresponds to submodular minimization, and the linear relaxation of (2) is solvable in polynomial time. ■

A.2. Equivalence Between the LP Relaxations of Formulations 1 and 2 for MSMD

THEOREM 1. The linear relaxations of formulations (1) and (2) have equal optimal values. Moreover, given an

extreme point feasible solution for one of the linear relaxations, we can obtain a feasible solution for the other linear

relaxation in polynomial time.

Proof: Assume we have a feasible solution (x1, t1,z1) for the LP relaxation of MILP (1); we construct a feasible

solution (x, t,z,w,y) for the LP relaxation of MILP (2):

• Let xS = ∑k∈M x1
S,k for each S⊆ N; which implies xS ≥ 0 from feasibility of x1, but also that xS ≤ 1.

• Set z = z1, and ti,k = t1
i,k for all i ∈ N, k ∈M.

• Set wi,k = ∑S∈Ni x1
S,k f (S) for all i ∈ N, k ∈M; from the feasibility of x1 and f , then wi,k ≥ 0.

• Define yi,k as the minimum number such that wi,k ≤ yi,k f ({1, . . . , i}); this implies 0≤ yi,k, as wi,k ≥ 0, but also that

yi,k ≤ 1 as wi,k = ∑S∈Ni x1
S,k f (S)≤ 1× f ({1, . . . , i}), where the last inequality follows from no order being dispatched

more than once (over all the fractional dispatches including that order).

We show that constraints (2a)-(2g) are satisfied by (x, t,z,w,y). As (1a) holds for x1 then (2a) holds. Moreover,

∑k∈M wi,k =∑k∈M ∑S∈Ni x1
S,k f (S) =∑S∈Ni f (S)∑k∈M x1

S,k =∑S∈Ni f (S)xS, and so (2d) is satisfied. From the definitions

of wi,k and ti,k plus the feasibility of x1 and t1, constraints (2b) and (2c) hold as well. Moreover, by construction (2e)

holds and from the choice of yi,k we have that ∑k∈M wi,k
f ({1,...,i}) = ∑k∈M yi,k, and as ∑k∈M Wi,k ≤ f ({1, . . . , i}), then (2f) is

satisfied. Finally, (2g) follows from the choice of x. For every feasible solution (x1, t1,z1) for the LP relaxation of (1),

we can thus create a feasible solution (x, t,z,w,y) for the LP relaxation of MILP (2) and with the same makespan.

Assume now that we have a feasible solution (x, t,z,w,y) for the LP relaxation of MILP (2); we create a feasible

solution (x1, t1,z1) for the LP relaxation of MILP (2) by setting z1 = z, vector x1 as zero, and t1
i,k = ti,k for all i∈N, k ∈
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M. Then fFor values x1
i,k do as follows: for each i ∈ N, we initialize an auxiliary vector Vi that has the same values as

wi,k for each k, i.e. Vi,k = wi,k. Then, for each S such that xS > 0, we find its maximum index i = max{ j : j ∈ S} and do

as follows: find the first index k such that Vi,k > 0; if Vi,k > xS f (S), then set x1
S,k = xS, substract xS f (S) from Vi,k and set

xS to zero. On the other hand, when Vi,k ≤ xS f (S), we set x1
S,k =

Vi,k
f (S) ≤ xS, set Vi,k = 0 and reduce xS by x1

S,k, continuing

until xS = 0. Because of feasibility of (x, t,z,w,y) (constraint (2d)) the final result of this procedure is a vector Vi that

is zero-valued for all i ∈ N.

We prove that (x1, t1,z1) is feasible for the LP relaxation of MILP (1). From the definition of t1 (1a) holds, and by

construction of the vector x1 so do constraints (1b) and (1c) (auxiliary vectors Vi are zero at the end of the procedure

above). Furthermore, for all S⊆ N we have ∑k∈M x1
S,k = xS, and (1d) holds. Every feasible solution (x, t,z,w,y) for the

LP relaxation of MILP (2) can thus be mapped to a feasible solution (x1, t1,z1) for the LP relaxation of MILP (1),

To conclude the proof, if we are given an extreme point solution for one of the LP relaxations, then that solution has

a polynomially bounded number of variables x with non-zero value, and hence the number of operations needed to go

from the solution of one LP relaxation to the solution for the other is polynomially bounded too. ■

A.3. Formulation 3 solves MSMD

PROPOSITION 9. Formulation (3) solves MSMD:

min z = tn+1

s.t. ti ≥ ri ∀i ∈ N (3a)

∑
i∈N

y0,i = m (3b)

∑
i∈N

yi,n+1 = m (3c)

∑
S⊆N:S∋i

xS = 1 ∀i ∈ N (3d)

∑
S∈Ni

xS =
i−1

∑
j=0

y j,i ∀i ∈ N (3e)

i−1

∑
j=0

y j,i =
n+1

∑
j=i+1

yi, j ∀i ∈ N (3f)

t j ≥ ti + ∑
S∈Ni

f (S)xS− (1− yi, j) f ([1, i]) ∀(i, j) : 1≤ i < j ≤ n+1 (3g)

t ≥ 0, yi j ∈ {0,1}, x ∈ {0,1}.

Furthermore, the linear relaxation can be solved in polynomial time.
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Proof: We prove that MILP (3) solves MSMD by showing that each feasible solution for (3) is feasible for

MSMD, and that each optimal solution for MSMD is feasible for MILP (3). Consider a feasible solution (x,y, t) for

MILP (3); there must be m indices i ∈ N such that y0,i = 1. We denote those indices as i11, . . . , i
1
m, and will map index

i1k to vehicle k for k ∈M. We construct a solution {vk}m
k=1 for MSMD:

• Assign z as the makespan for our solution in MSMD, then for each vehicle k ∈ M, we find the set of indices

i1k , i
2
k , . . . , i

ℓ
k such that yi1k ,i

2
k
= . . .= yiℓk,n+1 = 1; the set exists because of constraint (3f).

• For each vehicle k ∈ M, initialize vector vk as vk = (0,∅,0,∅, . . . ,0,∅), and set i = 1. If i is one of the values

i1k , . . . , i
ℓ
k, then because of constraint (3e) there must be a subset Si ∈Ni with xSi = 1; assign vk[2i] = ti and vk[2i+1] =

Si; otherwise assign vk[2i] = max
(
ri,vk[2(i−1)]

)
. Increase i by one and repeat until i = n.

Because x is a partition (3d), our solution for MSMD is as well. Moreover, because of construction and feasibility

of vector t (constraints (3a) and (3g)), our vectors vk also have a feasible schedule for the vehicles. As the makespan z

is feasible given this schedule, we just constructed a solution for MSMD, with equal makespan. Now, let {vk}m
k=1 be

an optimal solution for MSMD; we construct a solution for MILP (3) by first initializing vectors x,y, t as zero; then:

• For each k ∈M, find all the indices i1, i2, . . . , iℓ such that vk[2i1+1],vk[2i2+1], . . . ,vk[2iℓ+1] are non-empty sets;

we denote those sets as Si1 ,Si2 , . . . ,Siℓ . Set y0,i1 = yi1,i2 = . . .= yiℓ,n+1 = 1 and xi1 = xi2 = . . .= xiℓ = 1. Furthermore,

for j = i1, . . . , iℓ, set t j = vk[2 j].

• Let J be the set of indices that have not been modified; i.e. j ∈ J if t j was not modified. For j ∈ J set t j =

max{maxi< j(ti),r j}, with t0 = 0. Finally, set tn+1 as the minimum value that meets constraints (3g).

We show that (x, t,y) is feasible: from construction and feasibility of the MSMD solution we know that constraint

(3a) holds. By construction of values y, we know that constraints (3b), (3c), (3e) and (3f) hold. As {vk}m
k=1 induces a

partition, then constraint (3d) is also satisfied. Finally, with respect to constraint (3g) we have two cases. Consider j

in J, then for all i < j we have yi, j = 0, hence t j ≥ ti +∑S∈Ni xS f (S)− f ([1, i]). As f ([1, i])≥ ∑S∈Ni xS f (S), then our

choice of t j satisfies (3g). On the other hand, every order j ̸∈ J must be associated to a dispatch done by a vehicle k:

• Consider all indices i ∈ J, with i < j; if ti = ri then constraint (3g) holds; otherwise ti = tk for some k < i, and

because no batch in Ni is dispatched, then the inequality that involves indices j and k is stronger.

• Consider all indices i < j that are associated to the same vehicle k; because of feasibility of the original solution

for MSMD, then constraint (3g) holds for all pairs (i, j).

• Consider all indices ih1, i
h
2, . . . , i

h
ℓ associated to vehicle h ̸= k and batch Sh

1,S
h
2, . . ., such that ih1 < .. . < ihℓ < j.

Because of optimality of the MSMD solution, there exists a largest index, say iha such that tiha = riha
; and for every index
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b : a ≤ b ≤ ℓ we have that tihb
+ f (Sh

b) = riha
+∑

b
p=a f (Sh

p) ≤ rihb
+ f (∪b

p=aSh
p), otherwise the MSMD solution is not

optimal. Moreover, for all b≤ ℓ, we have f ([1, ihb])≥ f (∪b
p=aSh

p), thus for b : a≤ b≤ ℓ,

t j ≥ r j ≥ rihb
≥ rihb

+ f (∪b
v=aSh

v)− f ([1, ihb])

= rihb
+ f (∪b

v=aSh
v)− (1− yihb, j

) f ([1, ihb])

≥ tihb
+ f (Sh

b)− (1− yihb, j
) f ([1, ihb]).

Therefore, constraint (3g) holds for indices iha, . . . i
h
ℓ . Because of the choice of a, riha

≥ tihc + f (Sh
c) for c < a, so the

inequality holds for indices ih1, . . . , i
h
a−1. The three cases include all values i such that i < j, hence (3g) holds for all

pairs (i, j), with j ∈ N. In the case of j = n+1 (sink node), then the values yi,n+1 = 1 enforce the correct computation

of the makespan, and constraints with yi,n+1 = 0 are redundant. It follows that solution (x, t,z) for (3) is feasible. As we

already showed that every feasible solution for (3) is feasible for MSMD, and that every optimal solution for MSMD is

feasible for (3); then formulation (3) solves MSMD. With respect to the linear relaxation of (3), the separation problem

is very similar to that for (1) and (2), and can again be solved as a series of submodular minimization problems. ■

Appendix B: Proofs for the Set Cover Formulation

B.1. Complexity of Separation Problem

THEOREM 2. Suppose each order i ∈ N is associated with a value τi > 0, and let f (S) = ∑i∈S τi; this corresponds

to scheduling on identical serial machines with release times. The separation problem (5) is NP-Hard.

Proof: For each k ∈M the separation problem is minS⊆N{αk SMD(S)−β −∑i∈S γi}. As α ≥ 0, we just need to

optimize the separation problem for k∗ = argmink∈M{αk}. As f is modular, we can reformulate the separation problem

as the following maximization problem, where z = SMD(S):

max
t,x,z

− zαk∗ + ∑
i∈N

γixi (6a)

s.t. ti ≥ ri i ∈ N (6b)

ti+1 ≥ ti + xiτi i ∈ N \n (6c)

z≥ tn + xnτn (6d)

xi ∈ {0,1} ∀i ∈ N (6e)

t,z≥ 0 (6f)
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Constraints (6b), (6c) and (6d) are the feasibility constraints for SMD, and binary variable xi represents the choice of

adding order i to the subset S in the separation problem (5).

To complete the proof we reduce the knapsack problem to formulation (6). Consider the following knapsack problem

with integer numbers vi,wi > 0 for all i = 1,2 . . . ,n− 1 (representing value and weight of item i, respectively) and

integer knapsack capacity W ≥ wi; for all i = 1, . . . ,n−1:

max
x

n−1

∑
i=1

vixi (7a)

s.t.
n−1

∑
i=1

vixi ≤W (7b)

xi ∈ {0,1} ∀i = 1, . . . ,n−1 (7c)

We reduce this knapsack problem to MILP (6) by using the following transformation: we set ri = 0 for i = 1, . . . ,n−1

and rn = W . Moreover, we define τi = wi for i = 1, . . . ,n− 1 and τn = 1. Then we set γi = vi for i = 1, . . . ,n− 1 and

γn = 1+∑
n−1
i=1 vi and finally αk∗ = ∑

n−1
i=1 vi. The corresponding instance for separation problem (6) is:

max
t,x,z

− z
( n−1

∑
i=1

vi

)
+

n−1

∑
i=1

vixi +

(
1+

n−1

∑
i=1

vi

)
xn (8a)

s.t. tn ≥W (8b)

ti+1 ≥ ti + xiwi ∀i = 1, . . .n−1 (8c)

z≥ tn + xn (8d)

xi ∈ {0,1} ∀i ∈ N (8e)

t,z≥ 0 (8f)

As ri = 0 for i = 1, . . . ,n−1, by repeatedly using constraints (8c) and starting from t1 = 0, we can set t2 = 0+ x1w1,

then t3 = t2 + x2w2 = x1w1 + x2w2 and continue until tn−1 = ∑
n−2
i=1 xiwi. Then (8) is equivalent to:

max
tn,x,z

− z
(n−1

∑
i=1

vi

)
+

n−1

∑
i=1

vixi +

(n−1

∑
i=1

vi

)
xn + xn (9a)

s.t. tn ≥W (9b)

tn ≥
n−1

∑
i=1

xiwi (9c)

z≥ tn + xn (9d)

xi ∈ {0,1} ∀i ∈ N (9e)

tn,z≥ 0 (9f)
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We prove the equivalence between solutions for (9) and solutions for the original knapsack problem. Assume we

have an optimal solution for (9), it is clear that xn = 1 because adding order n increases the makespan z by just 1

(constraint (9d)) and therefore increases the total objective value by 1. It follows that the optimal solution is com-

pletely described by the orders maximizing−z
(

∑
n−1
i=1 vi

)
+∑

n−1
i=1 vixi. An optimal solution is such that ∑

n−1
i=1 xiwi ≤W ,

otherwise by integrality of values wi and W we would have ∑
n−1
i=1 xiwi ≥W + 1, and therefore z ≥W + 2, implying

that −z
(

∑
n−1
i=1 vi

)
+∑

n−1
i=1 vixi ≤−(W +2)

(
∑

n−1
i=1 vi

)
+∑

n−1
i=1 vixi ≤−(W +1)

(
∑

n−1
i=1 vi

)
, the objective when we do

not dispatch to any of the n− 1 first orders, a contradiction with optimality. Therefore, the optimal solution of (9) is

such that z =W +1, and maximizes ∑
n−1
i=1 vixi subject to binary variables xi for i = 1, . . . ,n−1 and ∑

n−1
i=1 xiwi ≤W ; it

is precisely a feasible optimal solution for the knapsack problem. Furthermore, (9) is a feasible problem (by setting all

xi = 0, ti = 0 for i = 1, . . . ,n, and tn = z = W ) and its objective is bounded by above (by 2(∑n−1
i=1 vi)+ 1), thus (9) is

guaranteed to have an optimal solution. The knapsack problem is NP-Hard, and we did a transformation with a linear

number of steps to get MILP (9); a special case of the separation problem (5) that considers a modular function f . ■

B.2. Complexity of Separation Problem for Modular Function with Setup Time

THEOREM 3. Suppose each order i ∈ N is associated with a value τi > 0, and consider a fixed setup time τ0 ≥ 0.

For f (S) = τ0+∑i∈S τi, (5) can be solved in pseudo-polynomial time. If ri, τi are integer for i∈N, and given an integer

upper bound U for SMD(N), the complexity of solving (5) is O(Un2); moreover, if τ0 = 0, the complexity is O(Un).

Proof: We start by remembering that the separation problem (5) is: minS⊆N{αk SMD(S)−β −∑i∈S γi}, and we

assume all values τi are integer. The separation problem can be solved by computing the shortest path between a source

and a sink node. We describe the directed acyclic network with source node T0 and sink node T1 as follows:

• States (Ψ, ℓ,h); for Ψ = 0, . . . ,U , ℓ ∈ N and h ∈ {ℓ+ 1, . . . ,n}∪{0}. Ψ denotes the partial makespan after the

end of stage ℓ, stage ℓ decides if order ℓ will be dispatched or not; and h represents the order with largest index that

will be a part of the current batch; if h = 0, then there is no current batch.

• First we describe the arcs leaving node T0:

— Arcs T0 → (Ψ,1,0) with distance 0 for Ψ ≤ τ1 + τ0− 1 (i.e. order 1 is not dispatched to); and with distance

−γ1 for Ψ≥ τ1 + τ0 (order 1 is dispatched as a singleton; this is our feasibility condition).

— Arcs T0→ (Ψ,1,h) with distance −γ1 for Ψ ≥ rh + τ1 + τ0 (i.e. order 1 is in a batch that has as largest order

h; this is the feasibility condition); for all 1 < h≤ n.

• Now we describe the arcs leaving node (Ψ, ℓ,0) for ℓ= 1, . . . ,n−1 and Ψ≤U :
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— Arcs (Ψ, ℓ,0)→ (Ψ, ℓ+1,0) with distance 0 (order ℓ+1 will not be dispatched).

— Arcs (Ψ, ℓ,0)→ (Ψ+ τℓ+1 + τ0, ℓ+1,0) with distance −γ1 (ℓ+1 dispatched as a singleton); if Ψ≥ rℓ+1.

— Arcs (Ψ, ℓ,0)→ (Ψ+ τℓ+1 + τ0, ℓ+1,h) with distance −γ1 (order ℓ+1 will be dispatched in a batch that has

h as its largest index order); if Ψ≥ rh (feasibility condition), and ℓ+1 < h.

• Arcs leaving nodes (Ψ, ℓ,h) for ℓ= 1, . . . ,n−1, ℓ < h and Ψ≤U :

— If ℓ+1 = h, then need to end the dispatch; i.e. arc (Ψ, ℓ, ℓ+1)→ (Ψ+ τℓ+1, ℓ+1,0) with distance −γℓ+1.

— Arc (Ψ, ℓ,h)→ (Ψ, ℓ+1,h) with distance 0; not adding order ℓ+1 to the current batch.

— Arc (Ψ, ℓ,h)→ (Ψ+ τℓ+1, ℓ+1,h) with distance −γℓ+1; adding order ℓ+1 to the current batch.

• Arcs (Ψ,n,0)→ T1 with distance Ψαk−β ; for all Ψ≥mini∈N(ri+τi)+τ0; which guarantees the optimal solution

includes at least one order being dispatched.

The total number of arcs departing states (Ψ, ℓ,0) is O(Un2); and the total number of arcs departing states (Ψ, ℓ,h)

is O(Un2); hence the total number of arcs in this directed acyclic graph is O(Un2) and solving the separation problem

has complexity O(Un2). When τ0 = 0 we do not need the h in the states and have just O(Un) arcs. ■

B.3. Complexity of Separation Problem for Family Setups

THEOREM 4. Suppose each order i∈N is associated with a value τi > 0; assume Q families F1,F2, . . . ,FQ partition

order set N, and each family q has a setup time τq ≥ 0. For f (S) = ∑i∈S τi+∑q:Fq∩S ̸=∅ τq, (5) can be solved in pseudo-

polynomial time. Let U be an integer upper bound on SMD(N), and define Uq = τq +∑ j∈Fq τ j for q = 1, . . . ,Q. If

vectors r,τ are integer, the complexity is O
(

nU
[
∏

Q
q=1 Uq|Fq|

])
.

Proof: The proof in Appendix B.2 corresponds to the case where Q = 1; we generalize the shortest path problem

needed to solve the separation problem in (5). Assume that vectors τ, r are integer, and that values Uq are known for

q = 1, . . . ,Q. We use the notation F{i} to denote the family that contains i ∈ N. The directed acylic graph is as follows:

• States (Ψ, ℓ,ψ1,h1,ψ2,h2, . . . ,ψQ,hQ); for all Ψ≤U , ℓ ∈ N, 0≤ ψq ≤Uq and ℓ < hq with hq ∈ Fq or hq = 0 for

all q ≤ Q. Ψ represents the partial makespan, ℓ is the decision stage (whether to dispatch to order ℓ+ 1 or not). For

all q ≤ Q, if hq > 0, then hq corresponds to the largest index of family q that is included in the current batch of that

family and ψq is the accumulated dispatching time of that batch; otherwise, if hq = 0 then there is no current dispatch

for family q, with ψq = 0.

• We now proceed to describe the arcs for this acyclic directed graph. Between stage ℓ and ℓ+ 1, the only coor-

dinates of the states vector that can change are Ψ and the coordinates of the family of order ℓ+ 1; i.e. F{ℓ+1}; so our

notation for states will be (Ψ, ℓ, . . . ,ψF{ℓ+1} ,hF{ℓ+1} , . . .). We start with the arcs departing T0:
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— Arcs T0→ (Ψ,1, . . . ,0,0, . . .) with distance 0; for all Ψ < τ1 + τF{1} (order 1 is not dispatched).

— Arcs T0→ (Ψ,1, . . . ,0,0, . . .) with distance −γ1; for all τ1 + τF{1} ≤Ψ≤U (order 1 dispatched as singleton).

— Arcs T0→ (Ψ,1, . . . ,τ1+τF{1} ,hF{1} , . . .) with distance−γ1; for all Ψ≤U , and 1 < hF{1} with hF{1} ∈ F{1} (i.e.,

order 1 is dispatched in a batch that has as maximum index hF{1} , feasibility conditions are enforced later).

• For each ℓ= 1, . . . ,n−1, and Ψ≤U ; when hF{ℓ+1} = 0 then ψF{ℓ+1} = 0 and the arcs are:

— (Ψ, ℓ, . . . ,0,0, . . .)→ (Ψ, ℓ+1, . . . ,0,0, . . .) with distance 0 (order ℓ+1 is not dispatched).

— (Ψ, ℓ, . . . ,0,0, . . .)→ (Ψ+ τℓ+1 + τF{ℓ+1} , ℓ+ 1, . . . ,0,0, . . .) with distance −γℓ+1 (order ℓ+ 1 is dispatched as

a singleton), if Ψ≥ rℓ+1 (feasibility condition).

— (Ψ, ℓ, . . . ,0,0, . . .)→ (Ψ, ℓ+1, . . . ,τℓ+1+τF{ℓ+1} ,h, . . .) with distance−γℓ+1 for h> ℓ+1 and h∈ F{ℓ+1} (order

ℓ+1 is dispatched in a batch where the largest order is h, feasibility condition is enforced later).

• For each ℓ= 1, . . . ,n−1, and Ψ≤U ; when hF{ℓ+1} = ℓ+1 then the only possible arc (that represents the dispatch

being finalized) is (Ψ, ℓ, . . . ,ψF{ℓ+1} ,hF{ℓ+1} , . . .)→ (Ψ+ψF{ℓ+1} + τℓ+1, ℓ+1, . . . ,0,0, . . .) and exists only if Ψ≥ rℓ+1

(feasibility condition for the batch with largest index ℓ+1).

• For each ℓ= 1, . . . ,n−1, and Ψ≤U , when hF{ℓ+1} > ℓ+1 then arcs are:

— (Ψ, ℓ, . . . ,ψF{ℓ+1} ,hF{ℓ+1} , . . .)→ (Ψ, ℓ+1, . . . ,ψF{ℓ+1} ,hF{ℓ+1} , . . .) with distance 0 (ℓ+1 not dispatched).

— (Ψ, ℓ, . . . ,ψF{ℓ+1} ,hF{ℓ+1} , . . .)→ (Ψ, ℓ, . . . ,ψF{ℓ+1}+τℓ+1,hF{ℓ+1} , . . .) with distance−γℓ+1 (order ℓ+1 is added

to the current batch of family F{ℓ+1}; feasibility conditions are enforced at ℓ+1 = hF{ℓ+1} ).

• Finally, we have the arcs (Ψ,n, . . . ,0,0, . . .)→ T1 with distance Ψαk−β ; for Ψ≥mini∈N(ri+τi+τF{i}); condition

that guarantees any shortest path dispatches to at least one order.

For each ℓ < n, if hF{ℓ+1} ̸= 0, then state (Ψ, ℓ, . . . ,ψF{ℓ+1} ,hF{ℓ+1} , . . .) has either one or two departing arcs; so there

are O
(

U
[

Π
Q
q=1Uq× |Fq|

]
) arcs departing from these states. On the other hand, if hF{ℓ+1} = 0, then there are up to

|F{ℓ+1}|+2 departing arcs; however as ψF{ℓ+1} = 0 and |F{ℓ+1}|<UF{ℓ+1} , then the total number of arcs departing from

these states is also O
(

U
[

Π
Q
q=1Uq×|Fq|

]
). By adding all arcs over ℓ ∈ N, there are O

(
nU

[
Π

Q
q=1Uq×|Fq|

])
arcs. ■

Appendix C: Interval-Solvable Functions

THEOREM 5. Suppose each i ∈ N is associated with a number τi > 0. Moreover, consider some τ0 ≥ 0 and a

concave non-decreasing function g : R→ R with g(0) = 0. The following functions are interval-solvable: (1) f (S) =

τ0 +maxi∈S{τi} and (2) f (S) = τ0 + g(|S|). Furthermore, f (S) = ∑i∈S τi is not only interval-solvable, it suffices to

consider singleton batches.
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Proof: We prove the claim for each of the functions separately:

(1) As shown by Erazo and Toriello (2024), we may assume without loss of optimality that the τi are in non-

increasing order. Consider a solution for the MSMD and order all batches according to their minimum index; let

B1, . . . ,Bh be the ordered batches. We set i = 1 and construct iteratively a new solution as follows: Let li and ui be

the minimum and maximum indices (respectively) of Bi; we construct new interval batch B′i = {li, li + 1, . . . ,ui} and

assign it to the same vehicle to which Bi is assigned to; then update all the batches Bi+1, . . . ,Bh by removing the new

orders that were just assigned to B′i, and increase i by one. If Bi is empty, then we add B′i as empty and increase i by

one; we finish this procedure when i = h+1. By construction, the minimum index of B′i is greater than or equal to the

minimum index of Bi for all i where B′i is not empty, so f (B′i) ≤ f (Bi) because of τ being monotone non-increasing.

Furthermore, the maximum index of B′i is smaller or equal to the maximum index of Bi for all i = 1, . . . ,h where B′i

is not empty, so each of those respective B′i dispatches do not start later than when batch Bi starts its dispatch in the

original optimal solution. Each vehicle has its makespan reduced or maintained and the interval solution is optimal.

(2) From Proposition 4, without loss of optimality we assume that each vehicle dispatches to batches according

to an increasing value of the maximum index of the batch. From this observation, we create an interval solution

as follows: order all the batches according to their maximum index and let B1, . . . ,Bh be the ordered batches, with

respective cardinalities C1, . . . ,Ch. We can construct the interval solution by doing B′1 = {1, . . . ,C1}, and B′i+1 =

{∑i
j=1 C j + 1, . . . ,∑i+1

j=1 C j} for i = 1, . . . ,h− 1, such as to get batches B′1, . . . ,B
′
h, where by construction |B′i| = |Bi|

and max j∈B′i
{ j} ≤max j∈Bi{ j}. By assigning each batch B′i to the same vehicle that batch Bi was assigned to, the new

solution cannot increase its makespan; thus, the interval solution is optimal as well.

The function f (S) = ∑i∈S τi being singleton-solvable comes from the serial-batching machine scheduling literature. ■

Appendix D: Strength of LP relaxation Lower Bounds

D.1. Worst Case for the Bound Given by the LP Relaxations of our Formulations

PROPOSITION 13. Let z∗I be the optimal makespan of MSMD for an instance I with m vehicles and n ≥ m orders.

Let zLP(1)
I , zLP(3)

I , zLP(4)
I be the optimal (fractional) makespan of the linear relaxations of (1), (3) and (4), respectively,

for instance I. Even when f is modular and all release times are zero, there exists a family of instances I1, I2, . . . such

that limh→∞ z∗Ih/zLP(1)
Ih

= limh→∞ z∗Ih/zLP(4)
Ih

= m, and limh→∞ z∗Ih/zLP(3)
Ih

= ∞.

Proof: Consider any arbitrary number of vehicles m and positive integer h; we design an instance Ih with n=m+2

orders, ri = 0 for all i ∈ N; τ1 = 1 and τi = 1/h for all orders i = 2, . . . ,m+2. For h≥ n−1, the makespan of instance

z∗Ih is equal to 1. We prove the claim for each of the LP relaxations:
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• For the LP relaxation of formulation (1), set xN,k = 1/m for every vehicle k ∈ M; this ensures constraint (1d)

holds. As all release times are zero, we set t1 = t2 = . . . = tn = 0 and constraints (1a), (1b) and (1c) hold. Finally,

zLP(1)
Ih

=
(
(n−1)/h+1

)
/m = (m+1)/hm+1/m; thus limh→∞ z∗Ih/zLP(1)

Ih
= m.

• For the LP relaxation of formulation (4), set x{1},k = x{2},k = . . .= x{m−1},k = x[m−1,m+1],k = 1/m for every vehicle

k ∈ M. This choice guarantees that constraints (4b) and (4c) hold. Each constraint (4a) becomes z ≥ 1/m+ (m−

2)/hm+3/hm = 1/m+(m+1)/hm; thus zLP(4)
Ih

= 1/m+(m+1)/hm; and limh→∞ z∗Ih/zLP(1)
Ih

= m.

• For the LP relaxation of formulation (3) set xi = 1 for all i ∈ N, then (3d) holds. Moreover, set y0,1 = 1, y1,2 =

2/3, y1,3 = 1/3 (i.e. flow constraints at order 1 hold), y0,2 = 1/3, y2,3 = 2/3, y2,n+1 = 1/3 (i.e. flow constraints at order

2 hold); y3,4 = 1/3, y3,n+1 = 2/3 (i.e. flow constraints at order 3 hold), y0,4 = 2/3, y4,n+1 = 1 (i.e. flow constraints at

order 4 hold) and finally, y0,i = yi,n+1 = 1 for i∈ 5, . . . ,n. It follows that constraints (3e) and (3f) hold; and as n=m+2;

then (3b) and (3c) hold as well. Now with respect to constraints (3g), starting with orders 1, 2, 3 and 4:

— t1 = 0; then t2 ≥ t1 +1− (1−2/3)×1 = 2/3; thus we set t2 = 2/3

— t3 ≥ t1+1−(1−1/3)×1= 1/3 but also t3 ≥ t2+1/h−(1−2/3)×(1+1/h) = 2/3+1/h−(1/3)(1+1/h) =

1/3+2/(3h); therefore we set t3 = 1/3+2/(3h)

— t4 ≥ t1+1−1 = 0; t4 ≥ t2+1/h−(1+1/h) =−1/3 and t4 ≥ t3+1/h−(1−1/3)(1+2/h) = 1/3+2/(3h)−

2/3−4/(3h) =−1/3−2/(3h); so we set t4 = 0

For ti with 5≤ i≤ n because f ([1, i])> 1 and the only non-zero incoming variable y is y0,i = 1, then ti = 0. For tn+1:

— tn+1 ≥ t1 +1−1 = 0

— tn+1 ≥ t2 +1/h− (1−1/3)(1+2/h) = 2/3+1/h−2/3−4/(3h)< 0

— tn+1 ≥ t3 +1/h− (1−2/3)(1+3/h) = 1/3+1/h−1/3−1/h = 0

— tn+1 ≥ t4 +1/h−0 = 1/h.

For all 5 ≤ i ≤ n we get tn+1 ≥ ti + 1/h = 1/h; thus, vector t is feasible for constraints (3a) and (3g). We conclude

that tn+1 = zLP(4)
Ih

= 1/h; and limh→∞ z∗Ih/zLP(1)
Ih

= ∞. By swapping the values of τ1 and τn, then zLP(1)
Ih

and zLP(4)
Ih

remain

constant, but zLP(3)
Ih

= z∗Ih ; this suggests that our formulations have a complementary structure for the lower bounds. ■

D.2. The Linear Relaxation of (1) is Dominated

PROPOSITION 14. Let each order i ∈ N be associated with a value τi > 0, and let f (S) = ∑i∈S τi. The lower bound

presented in Proposition 5 is greater than or equal to the lower bound given by the linear relaxation of (1).

Proof: We start the proof by adding a constraint in the formulation, that implies we get an upper bound on the

objective of the LP relaxation. We enforce xS,1 = xS,2 = . . .= xS,m for all subsets S ⊆ N; that makes the LP relaxation
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to be equivalent to solving a modified instance of a single vehicle SMD, with function f ′(S) = f (S)/m = (∑i∈S τi)/m.

Erazo and Toriello (2024) proved that this problem can be solved in linear time with the recursion t1 = r1 = 0 and

ti+1 = max(ti + f ′({i}),ri+1) for all i ∈ N\{1}. From the recursion, we know that there exists a maximum index j ≥ 1

such that t j = r j, and therefore we have:

z = tn+1 = t j +
n

∑
i= j

f ′({i})
m

= r j +
f ({ j, . . . ,n})

m
≤ r j +

f ({ j, . . . ,n})
min(m,n− j+1)

≤max
i∈N

[
ri +

f ({i, . . . ,n})
min(k,n− i+1)

]
.

The equations follow from definition, and the last expression is precisely the lower bound from Proposition 5. ■

D.3. Strong Set Cover Formulation

THEOREM 6. Let LB be a lower bound for the optimal makespan. Constraint (4a) of formulation (4) can be

strengthened to z ≥ ∑S⊆N max{SMD(S),LB}xS,k; furthermore, all previous complexity results on the formulation

remain unchanged.

Proof: To prove that the strong formulation continues to solve the MSMD, we assume that we have an optimal

solution z,x for MILP (4). Because that solution is optimal, then each vehicle k ∈M will have only one variable xSk,k

equal to one, and constraints (4a) are just equal to z≥ SMD(Sk)xSk,k for all k∈M. Moreover, LB is a lower bound on the

makespan; therefore, z≥ LB, which implies z≥max(SMD(Sk),LB)xSk,k for all k ∈M, thus z,x is also optimal for the

strong set cover formulation. The separation problem of the strong set cover MILP is minS⊆N
(
αk max(LB,SMD(S))−

β −∑i∈S γi
)

for all k ∈M. The proof for Theorem 2 continues to hold for any knapsack problem with W ≥ LB; thus,

the complexity result holds. For Theorems 3 and 4, the same dynamic programs work; but for the arcs arriving into the

terminal state T1 we modify the distance to be max(LB,Ψ)αk−β instead of Ψαk−β . ■

Appendix E: Experiment Details

E.1. Lower Bound for Serial-Batch Scheduling with Family Setups and Release Times

PROPOSITION 15. Consider an instance of MSMD with m vehicles and Q families F1, . . . ,FQ that partition order

set N. Each family q has a setup time τq ≥ 0, each order i ∈ N is associated to a positive number τi, and f (S) =

∑i∈S τi +∑q:Fq∩S ̸=∅ τq. For all i ∈ N, define Gi := min(m,n− i+ 1), Li :=
∣∣{q : Fq ∩ [i,n] ̸= ∅}

∣∣ (number of families

intersecting batch [1,n]), and Pi := {q : |Fq ∩ [i,n]| > 1}. Furthermore, define Vi as the increasing vector with the

values τq for each q ∈ Pi, each value repeated exactly |Fq∩ [i,n]|−1 times. Finally, let Pi(a) be the sum of the first a

components of vector Pi, with Pi(0) = 0 for all i ∈ N. Then,

max
i∈N

{
ri +

[
f ([i,n])+Pi

(
max{Gi−Li,0}

)]
/Gi

}
is a lower bound for the MSMD instance.
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Proof: For all i ∈ N, at time ri we still have to dispatch to orders [i,n], so at least f ([i,n]) units of time need to

be divided into at most m vehicles if m ≥ n− i+ 1 and n− i+ 1 vehicles otherwise (one order per vehicle). Thus,

ri + f ([i,n])/Gi is a lower bound. For any i, if Gi ≤ Li, then the expression within the principal maximum function is

exactly that lower bound. On the other hand, if Gi > Li then the total dispatching load of the lower bound is divided

into more vehicles than the total number of families intersecting with [i,n]. Therefore each vehicle needs to incur at

least one family setup time, we can add the Gi−Li smallest setup times among families that intersect batch [i,n] to

f (S) to get a lower bound on the total dispatch time done by the Gi vehicles. As f (S) considers the setup of each

family intersecting the batch, then only the families in Pi are eligible for their setup time to be selected; and if family

q intersects the batch k times, then that setup can be added up to k−1 extra times. Thus, we add Pi(Gi−Li) to f (S) to

get a lower bound ri +
(

f ([i,n])+Pi(Gi−Li)
)
/Gi. By maximizing over i ∈ N, we find the desired lower bound. ■

E.2. Details on Dispatch Structure for m≥ 2

We have as input the number of vehicles m, the vector of arrival times r (with n1 > n orders, determined by Algorithm

1), the dispatch time function f and the original makespan φ ∗. From Algorithm 1, m vehicles can dispatch to those

n1 orders within the desired makespan; therefore we modify MILP (1) to find the most efficient solution given those

constraints. We also leverage the fact that f is interval-solvable. Considering the same variables as MILP (1):

min ∑
S

xS,k f (S)

s.t. ti,k ≥ ri ∀i = 1, . . . ,n1, ∀k = 1, . . . ,m (10a)

ti+1,k ≥ ti,k + ∑
S∈Ni

xS,k fk(S) ∀i = 1, . . . ,n1−1, ∀k = 1, . . . ,m (10b)

φ
∗ ≥ tn1,k + ∑

S∈Nn1

xS,k fk(S) ∀k = 1, . . . ,m (10c)

m

∑
k=1

∑
S:S∋i

xS,k = 1 ∀i = 1, . . . ,n1 (10d)

t ≥ 0,x ∈ {0,1}


	Introduction
	Problem Definition and Applications
	Contributions and Organization

	Literature Review
	Same-Day Delivery
	Machine Scheduling
	Submodular Optimization

	Model Formulation and Preliminaries
	Identical Vehicles
	Symmetry-Reducing Formulation
	Flow-Based Formulation
	Set Cover Formulation
	Interval-Solvable Functions
	Formulation Comparison

	Computational Study and Discussion
	Machine Scheduling - Serial Batching with Family Setups
	Tactical Design for SDD

	Conclusions
	Proofs for Formulations (2) and (3)
	Formulation 2 Solves MSMD
	Equivalence Between the LP Relaxations of Formulations 1 and 2 for MSMD
	Formulation 3 solves MSMD

	Proofs for the Set Cover Formulation
	Complexity of Separation Problem
	Complexity of Separation Problem for Modular Function with Setup Time
	Complexity of Separation Problem for Family Setups

	Interval-Solvable Functions
	Strength of LP relaxation Lower Bounds
	Worst Case for the Bound Given by the LP Relaxations of our Formulations
	The Linear Relaxation of (1) is Dominated
	Strong Set Cover Formulation

	Experiment Details
	Lower Bound for Serial-Batch Scheduling with Family Setups and Release Times
	Details on Dispatch Structure for m2


