

A Simulation-Based Approach to Compare Policies and Stakeholders' Behaviors for the Ride-Hailing Assignment Problem

Ignacio Erazo ¹ Rodrigo de la Fuente²

¹Georgia Institute of Technology

²University of Concepcion

Winter Simulation Conference 2021, December 16th

Ride-Hailing

• On-demand transportation system for passengers.

Model 0000 Case Study

Results

Conclusions O

Ride-Hailing

- On-demand transportation system for passengers.
- Origin and destination.
- Use of GPS, integrated payment.
- Customized services offered in an app.

Model 0000 Case Study 0000 Results

Conclusions 0

Ride-Hailing

- On-demand transportation system for passengers.
- Origin and destination.
- Use of GPS, integrated payment.
- Customized services offered in an app.

(日)

GeorgiaInstitute

э

Model 0000 Case Study

Results

Conclusions 0

Impact

- Global market of 57 billion USD in (2021).
- Expected market of 108 billion USD (2025).
- 15 million trips per day (Uber, 2019).
- 30 million trips per day (Didi, 2019).
- Uber and Lyft produce up to 14% vehicle miles driven in some states (The Verge).

troduction	Model	Case Study	Results	Conclusions
000	0000	0000	00000	0

Literature review

- 1. Forecast demand, then balance it with supply: (Moreira-Matias et al. 2013), (Miao et al. 2016), (Xu et al. 2020), ...
- 2. Assigning vehicles to passengers:

In

troduction	Model	Case Study	Results	Conclusions
000	0000	0000	00000	0

Literature review

- 1. Forecast demand, then balance it with supply: (Moreira-Matias et al. 2013), (Miao et al. 2016), (Xu et al. 2020), ...
- 2. Assigning vehicles to passengers:

In

 $\begin{array}{ll} ({\sf Souza\ et\ al.\ 2016}) \to {\sf Assignment\ problem}.\\ ({\sf Lowalekar\ et\ al.\ 2016}),\ ({\sf Maciejewski\ et\ al.\ 2016}) \to \\ {\sf Two-stage\ stochastic\ optimization}.\\ ({\sf Alshamsi\ et\ al.\ 2009}),\ ({\sf Glaschenko\ et\ al.\ 2009}) \to \\ {\sf Multi-agent\ simulations}. \end{array}$

3. Strategies to optimize performance: drivers' behaviors (Hoque et al. 2012) \rightarrow Data analysis to help drivers find passengers.

(Li et al. 2009), (Henao and Marshall et al. 2019) \rightarrow Idle time: park or drive?

・ コ ト ・ 一 ト ・ ヨ ト ・

Goal and Contributions

Goal: Propose different behaviors for drivers while waiting for passengers and compare them with respect to multiple objectives.

Contributions:

0000

Case Study

Results 00000 Conclusions 0

Goal and Contributions

Goal: Propose different behaviors for drivers while waiting for passengers and compare them with respect to multiple objectives.

Contributions:

1. We present the most realistic simulation model for this problem, coded on open source code (Python 3.6), available in github.

0000

Case Study

Results 00000 Conclusions 0

Georgialnstitute of Technology

э

(日)

Goal and Contributions

Goal: Propose different behaviors for drivers while waiting for passengers and compare them with respect to multiple objectives.

Contributions:

- 1. We present the most realistic simulation model for this problem, coded on open source code (Python 3.6), available in github.
- 2. We examine the effect of different passengers' arrival conditions on the multiple objectives.

0000

Case Study

Results

Conclusions 0

Georgialnstitute

э

(日)

Goal and Contributions

Goal: Propose different behaviors for drivers while waiting for passengers and compare them with respect to multiple objectives.

Contributions:

- 1. We present the most realistic simulation model for this problem, coded on open source code (Python 3.6), available in github.
- 2. We examine the effect of different passengers' arrival conditions on the multiple objectives.
- 3. We compute and present all results for the multiple objectives on a micro-level, which is novel and allows for better insights and helps to construct better policies.

Model •000 Case Study 0000 Results

Conclusions 0

Georgialnstituts

э

(日)

Model Classes

Driver:

Class Attributes:
- Number of drivers
- Distance driven with passengers
- Distance driven to pick-up passengers
- Distance driven idle
- Number of rides rejected by drivers
- Number of "Roaming events"
Instances Attributes:
- Preferences to accept a ride
- List of arrival events
- List of leaving events
- Capacity
- Luxury Status
- Arrival locations
- Next Roaming Event
Passenger:
r abbeiiger.
Class Attributes:
- Number of passengers

- Number of accepted drives

- Number of "non-available drivers for ride"

- Number of drives rejected by passengers Instances Attributes:

- Arrival location

- Destination

- Waiting time preferences

- Capacity needed

- Luxury requirements

 ${\bf MatchingAlgorithm} ({\it Passenger}, {\rm *AvailableDriversList}, {\it RoadNetwork}):$

PossibleDrivers = AvailableDriversList; Times = GetTimes(Passenger, PossibleDrivers, RoadNetwork) while length(Times) > 1 do Index = argmin(Times)SelectedDriver = PossibleDrivers[Index] if SelectedDriver.MeetsRequirements == True then if SelectedDriver.AcceptsRide == True then return SelectedDriver, Times[Index] end else Update DriverRejectsRide metric PossibleDrivers.Eliminate(SelectedDriver) Times.Eliminate(Index) end end else Update DriverDoesNotMeetRequirement metric PossibleDrivers.Eliminate(SelectedDriver) Times.Eliminate(Index) end end return "No driver meeting requirements is available"

Model

Case Study

Results 00000 Conclusions 0

Roaming Events

1. **No movement scenario:** After arriving to the system or dropping-off a passenger the driver waits parked in the same location.

Results 00000

Roaming Events

- 1. **No movement scenario:** After arriving to the system or dropping-off a passenger the driver waits parked in the same location.
- 2. **Single movement scenario:** After ending an event the driver continues driving to another location looking for passengers.

Model

Case Study

Results 00000

Roaming Events

- 1. **No movement scenario:** After arriving to the system or dropping-off a passenger the driver waits parked in the same location.
- 2. **Single movement scenario:** After ending an event the driver continues driving to another location looking for passengers.
- 3. Nearest hotspot scenario: Company gives a list of hotspots, and drivers go to nearest hotspot where they wait.

Model

Case Study

Results 00000

Georgialnstitute

(日)

Roaming Events

- 1. **No movement scenario:** After arriving to the system or dropping-off a passenger the driver waits parked in the same location.
- 2. **Single movement scenario:** After ending an event the driver continues driving to another location looking for passengers.
- 3. Nearest hotspot scenario: Company gives a list of hotspots, and drivers go to nearest hotspot where they wait.
- 4. **Coordinated hotspot scenario:** Company decides where the driver should go among a list of hotspots.

0000

Case Study •000 Results 00000 Conclusions 0

Georgialnstitute

э

(日)

San Francisco Area

- Top 5 most-populous area in US.
- By the end of 2016 more than 5,700 drivers in peak-hours.
- More than 570,000 miles everyday, more than 170,000 drives, 15% of intra-SF trips (SFCTA 2017)
- Causing 55% average speed decline in the city (Marshall 2018)

IVIODEI 0000 Case Study •000 Results 00000 Conclusions 0

GeorgiaInstitute

э

San Francisco Area

- Top 5 most-populous area in US.
- By the end of 2016 more than 5,700 drivers in peak-hours.
- More than 570,000 miles everyday, more than 170,000 drives, 15% of intra-SF trips (SFCTA 2017)
- Causing 55% average speed decline in the city (Marshall 2018)

- QGIS for road network.
- 11,372 nodes and 31,428 edges.
- 70x70 meters digital elevation model.
- Speed according to edge classification and adjusted by slope (Verma et al. 2017).
- Shortest path algorithm is based on the network.

(日)

0000

Case Study

Results 00000 Conclusions 0

Passengers (SFCTA 2017)

Nodel 0000 Case Study 00●0 Results 00000 Conclusions 0

Drivers (Piorkowski et al. 2009)

Introduction	Model
0000	0000

Case Study

Results

Conclusions 0

Overall Service Level

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ○理 →

 Model
 Case Study
 Results
 Conclusion

 vo
 0000
 0000
 00000
 0

Chaotic Conditions Effect

- No movement saves at least 11M USD per year and 57M of CO₂ per year in SF versus Single movement.
- No movement is very hard to implement now, needs extensive parking (up to 39,000 sq. meters).
- Nearest Hotspot saves 7.9M USD and 38M of CO₂.
- A need of interaction and mutual agreement between stakeholders. Investments are also needed.
- Spatial discrepancies should be addressed by introducing incentives/new transportation options.

Georgialnstitute

э

(日)

Conclusions and Future Work

- Proposed realistic simulation model that can be used under multiple conditions.
- Framework allows the comparison of different drivers' behaviors while waiting for riders, and also to evaluate the impact in different areas of the city and periods of time.
- Huge benefits can be obtained if the behaviors are optimized.

Conclusions and Future Work

- Proposed realistic simulation model that can be used under multiple conditions.
- Framework allows the comparison of different drivers' behaviors while waiting for riders, and also to evaluate the impact in different areas of the city and periods of time.
- Huge benefits can be obtained if the behaviors are optimized.

Georgialnstitute

э

(日)

- Different matching algorithms \rightarrow dynamic reallocation.
- How to better select the hotspots?
- Pricing incentives and their effects.