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Ride-Hailing

• On-demand transportation
system for passengers.

• Origin and destination.

• Use of GPS, integrated
payment.

• Customized services offered in
an app.
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Impact

• Global market of 57 billion USD in
(2021).

• Expected market of 108 billion
USD (2025).

• 15 million trips per day (Uber,
2019).

• 30 million trips per day (Didi,
2019).

• Uber and Lyft produce up to 14%
vehicle miles driven in some states
(The Verge).
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Literature review

1. Forecast demand, then balance it with supply:
(Moreira-Matias et al. 2013), (Miao et al. 2016), (Xu et al.
2020), . . .

2. Assigning vehicles to passengers:
(Souza et al. 2016) → Assignment problem.
(Lowalekar et al. 2016), (Maciejewski et al. 2016) →
Two-stage stochastic optimization.
(Alshamsi et al. 2009), (Glaschenko et al. 2009) →
Multi-agent simulations.

3. Strategies to optimize performance: drivers’ behaviors
(Hoque et al. 2012) → Data analysis to help drivers find
passengers.
(Li et al. 2009), (Henao and Marshall et al. 2019) → Idle
time: park or drive?
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Goal and Contributions

Goal: Propose different behaviors for drivers while waiting for
passengers and compare them with respect to multiple objectives.

Contributions:

1. We present the most realistic simulation model for this
problem, coded on open source code (Python 3.6), available
in github.

2. We examine the effect of different passengers’ arrival
conditions on the multiple objectives.

3. We compute and present all results for the multiple objectives
on a micro-level, which is novel and allows for better insights
and helps to construct better policies.
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Model Classes

MatchingAlgorithm(Passenger,*AvailableDriversList,RoadNetwork):

PossibleDrivers = AvailableDriversList;
Times = GetTimes(Passenger,PossibleDrivers,RoadNetwork)
while length(Times) ≥ 1 do

Index = argmin(Times)
SelectedDriver = PossibleDrivers[Index]
if SelectedDriver.MeetsRequirements == True then

if SelectedDriver.AcceptsRide == True then
return SelectedDriver, Times[Index]

end
else

Update DriverRejectsRide metric
PossibleDrivers.Eliminate(SelectedDriver)
Times.Eliminate(Index)

end

end
else

Update DriverDoesNotMeetRequirement metric
PossibleDrivers.Eliminate(SelectedDriver)
Times.Eliminate(Index)

end

end
return “No driver meeting requirements is available”
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Model Events
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Roaming Events

1. No movement scenario: After arriving to the system or
dropping-off a passenger the driver waits parked in the same
location.

2. Single movement scenario: After ending an event the driver
continues driving to another location looking for passengers.

3. Nearest hotspot scenario: Company gives a list of hotspots,
and drivers go to nearest hotspot where they wait.

4. Coordinated hotspot scenario: Company decides where the
driver should go among a list of hotspots.
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San Francisco Area

• Top 5 most-populous
area in US.

• By the end of 2016 more
than 5,700 drivers in
peak-hours.

• More than 570,000 miles
everyday, more than
170,000 drives, 15% of
intra-SF trips (SFCTA
2017)

• Causing 55% average
speed decline in the city
(Marshall 2018)

• QGIS for road network.

• 11,372 nodes and 31,428
edges.

• 70x70 meters digital
elevation model.

• Speed according to edge
classification and
adjusted by slope (Verma
et al. 2017).

• Shortest path algorithm
is based on the network.
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Passengers (SFCTA 2017)
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Drivers (Piorkowski et al. 2009)
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Drivers (SFCTA 2017)
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Overall Service Level
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Chaotic Conditions Effect
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Avg. Waiting Time (sec)
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Single movement 

The mean value for the Single
movement is 76.57 (std. 61.34)
while its maximum value is 276.11
seconds. Conversely, the Nearest
hotspot mean values is 115.07 (std.
71.59), with a maximun observed
value of 329.75 seconds.

The single movement strategy has
a mean of 83.47% (std. 28%) and
the value at the first quartile is
80%. On the contrary, the Nearest
hotspot has a mean of 78% (std.
31%) and 61% marks the first
quartile.

© Rodrigo De la Fuente Ph.D.

No movement 

Coordinated hotspot

The no-movement strategy has a
maximum average lost of 1.2
passengres, while the others have
maximums of 4, 14.7 and 15.6,
respectively. Additonally, the mean
values at the city level are:
0.03(0.09), 0.08(0.24), 0.27(0.70),
and 0.28(0.72) respectively.
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Discussion

• No movement saves at least 11M USD per year and 57M of
CO2 per year in SF versus Single movement.

• No movement is very hard to implement now, needs extensive
parking (up to 39,000 sq. meters).

• Nearest Hotspot saves 7.9M USD and 38M of CO2.

• A need of interaction and mutual agreement between
stakeholders. Investments are also needed.

• Spatial discrepancies should be addressed by introducing
incentives/new transportation options.
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Conclusions and Future Work

• Proposed realistic simulation model that can be used under
multiple conditions.

• Framework allows the comparison of different drivers’
behaviors while waiting for riders, and also to evaluate the
impact in different areas of the city and periods of time.

• Huge benefits can be obtained if the behaviors are optimized.

• Different matching algorithms → dynamic reallocation.

• How to better select the hotspots?

• Pricing incentives and their effects.
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